

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

FACULTAD DE QUÍMICA

T E S I S

USO DE JUGO DE AGAVE SALMIANA COMO BIOCATALIZADOR EN LA SÍNTESIS DE 1,4 DIHIDROPIRIDINAS

QUE PARA OBTENER EL GRADO DE

MAESTRA EN CIENCIAS QUÍMICAS

PRESENTA María Guadalupe Madín Ceballos

> DIRECTOR DE TESIS Dr. David Corona Becerril

Toluca de Lerdo, Estado de México, noviembre 2024.

ÍNDICE

ABSTRACT	10
RESUMEN	11
INTRODUCCIÓN	13
MARCO TEÓRICO	16
QUÍMICA DE 1,4 DIHIDROPIRIDINAS	16
Generalidades Síntosis do 1.4 dibidropiridinas	
Catálisis	
Otras fuentes de energía	
QUÍMICA SOSTENIBLE	
Generalidades	
Biocatálisis con jugo de frutas	
AGAVE SALMIANA	36
DISEÑO METODOLÓGICO	39
JUSTIFICACIÓN	39
HIPÓTESIS	41
OBJETIVOS	42
Objetivo general	
Objetivos específicos	
VARIABLES	43
METODOLOGÍA	44
Preparación de jugo de Agave salmiana	
Método A, variación de la temperatura de reacción	
Método B, variación del volumen de jugo de Agave salmiana	
Método deneral nara la síntesis de 1 A-dibidropiridinas	/ 4 / ۸۷
metodo general para la sintesis de 1,4-unitu opiniunas	
	5

Índice

ANÁLISIS DE RESULTADOS	50 51
Método B, variación de la temperatura de reacción	
Método C, variación del origen del nitrógeno	
Método general para la síntesis de 1,4-dihidropiridinas Mecanismo propuesto	58 66
CONCLUSIONES	67
BIIBLIOGRAFIA	70
ANEXO 1	77

ÍNDICE DE TABLAS

Tabla 1	Nuevas estructuras de 1,4-dihidropiridinas con potencial actividad farmacológica	Página 18
Tabla 2	Rendimientos obtenidos en la síntesis de 1,4-dihidropiridinas catalizada por HCIO ₄ -SiO ₂	Página 21
Tabla 3	Resultados de rendimiento en la preparación de 1,4- dihidropiridinas aplicando catalizador Fe-Mo-C-O o ácido algínico.	Página 23
Tabla 4	Estudio en el reúso de 2-HEAA líguido iónico	Página 26
Tabla 5	Síntesis de 1,4-dihidropiridina bajo irradiación ultrasónica en diferentes frecuencias	Página 27
Tabla 6	Porcentaje de rendimiento y tiempo de reacción	Página 29
Tabla 7	Rendimientos obtenidos en la síntesis de 1,4-dihidropiridina con biocatálisis de jugo de limón cítrico	Página 35
Tabla 8	Especificaciones para aguamiel tipo I y II conforme a NMX-V- 022-1972	Página 38
Tabla 9	Variación de la temperatura de reacción	Página 45
Tabla 10	Variación del volumen de jugo de Agave salmiana	Página 46
Tabla 11	Variación del origen del nitrógeno	Página 47
Tabla 12	Variación del aldehído	Página 48
Tabla 13	Rendimientos obtenidos en la síntesis de 1,4-dihidropiridina con biocatálisis de <i>Agave salmiana</i> , variable temperatura de reacción	Página 52
Tabla 14	Rendimientos obtenidos en la síntesis de 1,4-dihidropiridina a temperatura ambiente, variable volumen de jugo de <i>Agave salmiana</i>	Página 54
Tabla 15	Rendimientos obtenidos en la síntesis de 1,4-dihidropiridina a temperatura ambiente con biocatálisis de jugo de <i>Agave</i> salmiana, variable fuente de nitrógeno	Página 57
Tabla 16	Rendimientos de dihidropiridinas producto de la síntesis de Hantzsch biocatalizada con jugo de <i>Agave salmiana</i>	Página 61

ÍNDICE DE FIGURAS

Figura 1	Isómeros de dihidropiridinas	Página 16
Figura 2 Figura 3	Catalizador líquido iónico de acetato de 2-hidroxietilamonio	Página 17 Página 25
Figura 4	Productos sintetizados	Página 50
Figura 5	Estructura del cristal de dietil 2,6-dimetil-1,4-difenl-1,4- dihidropiridina-3,5-dicarboxilato obtenido por rayos X. CCDC 689471	Página 59
Figura 6	Estructura del cristal de dietil 4-(2,5-difluorofenill)-2,6-dimetil-1- fenill-1,4-dihidropiridina-3,5-dicarboxilato obtenido por rayos X. CCDC 2385271	Página 60
Figura 7	Estructura del cristal de dietil 5-hidroxi-5-metil-1-(fenilamino)- 3,4,5,6-tetrahidro-[3-(4-nitro) fenil] ciclohexene-2,4- dicarboxilato obtenida por rayos X. CCDC 2385272.	Página 62
Figura 8	Familia de productos obtenidos en la síntesis con biocatálisis de jugo de <i>Agave salmiana</i>	Página 69

ACRÓNIMOS

AFI AICI3 CAN CCDC COSY °C DEPT DHP EtoH FDA Fe/SiO2	Ingrediente Activo Farmacéutico Tricloruro de aluminio Nitrato de cerio y amonio Cambridge Crystallographic Data Centre Correlated Spectroscopy Grados centígrados Distortionless Enhancement by Polarization Transfer Dihidropiridina Etanol Food and Drug Administration Hierro soportado en sílice gel
HCIO4-SiO2	Ácido perclórico-sílice gel
HIV	Human immunodeficiency virus
HMBC	Heteronuclear multiple bond correlation
HSQU	Heteronuclear single quantum conerence
	Initarrojo Hidruro do litio y oluminio
	Miliaromo
mg	Minuto
	Militroe
Mo	Malindana
	No aplica Perebidrure de cadio
	Boroniaruro de Soaio
	Normas Mexicanas
NH4OAC	Acetato de amonio
pr DMN 4D	Punto de fusion
RMN 1D	Resonancia magnetica nuclear una dimension
RMN 2D	Resonancia magnetica nuclear dos dimensiones
RMN 1H	Resonancia magnetica nuclear de hidrogeno
RMN 13C	Resonancia magnetica nuclear de carbono
TLC	Cromatografia en capa fina
	watt
5VV-F6F	ivanotudos de tostato de nierro impregnados con el 5% en peso de molibdeno
%	Porcentaje

ABSTRACT

The use of *Agave salmiana* juice as an acid biocatalyst and green solvent that is safe, nontoxic, and biodegradable, in a new sustainable environmentally friendly process for the formation of 1,4-dihydropyridine derivatives using Hantzsch synthesis conditions is presented. The results of this strategy show the formation of 1,4-dihydropyridines as the main product, but also, depending on the reaction conditions, it is possible to observe the formation of 1,2-dihydropyridine derivatives, pyridines, and cyclohexene ring.

Graphical abstract

RESUMEN

RESUMEN

En el presente trabajo de investigación se desarrolló un procedimiento para la formación de 1,4-Dihidropiridina (1,4-DHP), a través de la estrategia de Hantzsch utilizando acetoacetato de etilo, un aldehído aromático y una fuente de nitrógeno como anilina e introduciendo como biocatalizador jugo de *Agave salmiana,* comúnmente llamado maguey pulquero.

Se estudiaron las variables de volumen del jugo de *Agave salmiana*, temperatura y fuente de nitrógeno para encontrar los mejores rendimientos de la reacción, determinando que el tiempo de una semana con un mililitro de jugo de *Agave salmiana* a temperatura ambiente y utilizando anilina como fuente de nitrógeno se obtuvieron los mejores rendimientos. Una vez identificadas las condiciones de reacción se utilizaron varios aldehídos y fuentes de nitrógeno para verificar la repetibilidad del procedimiento hacia las 1,4-DHPs.

Finalmente se puede decir que el uso de jugo de *Agave salmiana* como biocatalizador es un proceso económico y ambientalmente amigable.

Como perspectiva importante de esta estrategia en dos de los ejemplos realizados se observó la formación de N-arilciclohexenilaminas.

INTRODUCCIÓN

INTRODUCCIÓN

Dihidropiridinas representan un grupo de compuestos orgánicos basados en un anillo de piridina.

La síntesis de Hantzsch es una de las reacciones más conocidas y que ha tenido demasiada atención ³, debido a su notoria actividad biológica y propiedades farmacológicas del producto obtenido, como antagonista del canal de calcio ⁴, antitumoral ⁵, antiinflamatorio ⁶, antimicrobial ⁷, anticonvulsivo ⁸, analgésico ⁹, antituberculosis.¹⁰, HIV inhibidor de la integrasa ¹¹ y neuroprotector ¹² por su alta variedad de aplicaciones algunos autores mencionan que la 1, 4-DHP es una estructura privilegiada que puede interactuar con diversos canales de iones y receptores de proteína-G. ¹³

La obtención de 1,4-dihidropiridina fue reportada por Arthur Hantzsch en 1882, pero tomó ochenta años para probar la actividad biológica de estos compuestos, y finalmente Bossert y Vater validaron que las 1,4-DHPs poseen una destacada actividad vasodilatadora, desde entonces diferentes dihidropiridinas han dado a la industria farmacéutica ganancias por billones de dólares. Uno de los top cinco en ventas es Amlodipino (Norvase) agente hipertensivo.².

La síntesis de Hantzsch involucra la condensación de dos equivalentes de compuestos β -dicarbonilo, un equivalente de un aldehído y un equivalente de acetato de amonio, el resultado inmediato de estos componentes es la 1,4-dihidropiridina,¹⁴ este método generalmente llevado a cabo en ácido acético o en reflujo de etanol por

largos tiempos de reacción presenta bajos rendimientos ¹⁵, además la síntesis tradicional de Hantzsch produce una mezcla racémica de 1,4-DHPs asimétricas ¹³ por lo que se han desarrollado algunas mejoras en sus métodos de síntesis.

La reacción de Hantzsch es un ejemplo de reacción multicomponente, las cuales en recientes años han sido exitosamente estudiadas por sus procedimientos simples, alta selectividad y un ahorro económico, contrario a los métodos clásicos para sintetizar moléculas por procedimientos secuenciales los cuales requieren de más de una etapa de síntesis y como consecuencia de más de un material de inicio. ³

La reacción de Hantzsch tiene un planteamiento de química verde al tener un producto funcionalizado, en una sola etapa, sin intermedios aislables que pueden requerir grandes cantidades de solventes para su purificación.

La química verde se ha convertido en un enfoque poderoso para reducir los peligros químicos. ¹⁶. Con esta óptica se han realizado diversas optimizaciones en la síntesis de Hantzch, como uso de agua como el medio de reacción más amigable con el medio ambiente,¹⁷ utilización de ultrasonido, ¹⁸ microondas ¹⁹ o bajo catálisis y libre de solvente ²⁰

El uso de jugo de limón como biocatalizador en la síntesis de 1,4 dihidropiridinas fue reportado por Anil Gorakshnath et.al., ²¹, el jugo natural no tóxico es una ventaja de este método.

Considerando las diversas aplicaciones de las 1,4- dihidropiridinas y el continuo crecimiento en este campo, la química medicinal demanda explorar nuevas metodologías sintéticas ², entonces con el fin de contribuir en esta nueva generación de síntesis química que requiere reacciones amigables minimizando la generación de

desechos y utilizando biocatalizadores, lo que lleva a una reducción de costos de los procesos, trabajamos en una innovadora síntesis verde de 1,4 dihidropiridina, utilizando como biocatalizador jugo de *Agave salmiana* coloquialmente conocido como aguamiel de maguey pulquero, de alta disponibilidad en México ²².

MARCO TEÓRICO

MARCO TEÓRICO

QUÍMICA DE 1,4 DIHIDROPIRIDINAS

Generalidades

El alcance de los compuestos a base de nitrógeno en la medicina crece día a día. Los N-heterocíclicos ofrecen un alto grado de diversidad estructural que ha demostrado ser útil para la búsqueda de nuevos agentes terapéuticos para mejorar la farmacocinética y otros aspectos fisicoquímicos²³, en este grupo de compuestos encontramos a las dihidropiridinas, las cuales representan un grupo de compuestos orgánicos basados en un anillo de piridina. Teóricamente, cinco isómeros de DHPs²⁴ pueden existir, pero actualmente los más reconocidas son 1,2-dihidro y 1,4-dihidro (Figura 1)¹.

2,3-dihidropiridina

3,4-dihidropiridina

2,5-dihidropiridina

1,2-dihidropiridina

1,4-dihidropiridina

Figura 1 Isómeros de dihidropiridina.

Las DHPs han revolucionado la investigación farmacéutica con sus novedosas propiedades biológicas², ejemplo de ello es la base de datos de la FDA, la cual ostenta 95 productos farmacéuticos aprobados que derivan de piridina o dihidropiridina ²⁵ Bossert y Vater validaron que las 1,4-DHPs poseen una destacada actividad vasodilatadora.², y desde entonces diferentes dihidropiridinas se han aprobado por las agencias regulatorias para el tratamiento de diversas enfermedades (Figura 2).

NO₂ 0、

Nimodipino Neuroprotector³⁰

Dolutegravir Inhibidor HIV-1¹¹

CI H₃COOC COOC₂H₅ CH₂OCH₂CH₂NH₂

Amlodipino

Antipertensivo³¹

Figura 2 Estructuras de 1,4-dihidropiridinas y actividad farmacológica

Y nuevas moléculas como las ilustradas en la Tabla 1, se encuentran en investigación por su potencial actividad farmacológica.

Tabla 1Nuevas estructuras de 1,4-dihidropiridinas con potencial actividadfarmacológica

Aunque la síntesis de 1,4 dihidropiridinas ha sido ampliamente estudiada, nuevas aplicaciones potenciales como: control de fertilidad, remodelación ósea, cáncer, esquistosomiasis y funciones inmunitarias pueden volver a aumentar el interés en el diseño de nuevas moléculas derivadas del núcleo de 1,4-DHP.²⁶ Lo anterior con un

enfoque de sustentabilidad, que demanda una nueva generación de estrategias para síntesis química, teniendo reacciones novedosas que puedan maximizar los productos deseados y minimizar los coproductos.²⁷

Síntesis de 1,4-dihidropiridinas

El método de Hantzsch generalmente involucra largos tiempos de reacción y presenta bajos rendimientos ¹⁵, además la síntesis tradicional de Hantzsch produce una mezcla racémica de 1,4-DHPs, por lo que se requieren etapas adicionales para la separación de los enantiómeros, como consecuencia el desarrollo de métodos sintéticos estereoselectivos para la obtención de agentes terapéuticos es una de las principales prioridades de la química medicinal ¹³, luego entonces los investigadores han desarrollado mejoras en las síntesis de Hantzsch para cubrir los requerimientos actuales de rapidez, conveniencia, selectividad y limpieza que requiere la química medicinal²⁹.

Hoy en día la demanda mundial de Ingredientes Activos Farmacéuticos (AFI) requiere procesos sintéticos novedosos, rentables, seguros y respetuosos con el medio ambiente ³².

La industria farmacéutica requiere rutas sintéticas compatibles con el medio ambiente y cumplir con las demandas de la economía del proceso y las especificaciones del producto. Así como reducir continuamente los tiempos de desarrollo, y la catálisis tiene el potencial de producir productos químicos, cubriendo estas expectativas³³. Desde la publicación de la síntesis de Hantzsch se han realizado optimizaciones utilizando diversos catalizadores y/o cambiando la fuente de energía tradicional, un ejemplo de esto es la utilización de catálisis ³⁶ heterogenea³⁷o irradiación ³⁸ de microondas³⁹. También se ha trabajado en el cambio de los sustituyentes del ciclo de la 1,4 dihidropiridina variando la simetría de las posiciones.⁴⁰

Catálisis

La función de la catálisis no es sólo mejorar los rendimientos y acortar los tiempos de reacción, sino que todas las selectividades, incluida la selección de la vía de reacción, están interconectadas con la catálisis. Varias reacciones multicomponente tienen al menos dos o más vías de reacción posibles, que pueden estar funcionando al mismo tiempo. Sin embargo, en condiciones catalizadas las reacciones tienen una fuerte tendencia a proceder a través de una vía de reacción preferencial como consecuencia de la acción catalítica⁴¹.

El concepto de utilización de reactivos y catalizadores adsorbidos en soportes inorgánicos insolubles son cada vez más populares, estas reacciones tienen ventajas de condiciones suaves de reacción, mayor rendimiento y mayor selectividad. Sridhar, et al.,⁴² publicaron en 2006 la reacción para formar 1,4-dihidropiridinas utilizando como catalizador ácido perclórico soportado en sílice gel (Esquema 1)

Marco teórico

Esquema 1 Síntesis de 1,4 dihidropiridinas catalizada por HClO₄-SiO₂.

En este proceso con diversos aldehídos aromáticos se obtienen rendimientos arriba del 85%, como se puede observar en la Tabla 2.

R	Rendimiento		
	(%)		
C_6H_5	95%		
$4-CH_3-C_6H_5$	90%		
$4-OH-C_6H_4$	90%		
$2-CI-C_6H_4$	87%		
$4-NO_2-C_6H_4$	92%		

Tabla 2Rendimientos obtenidos en la síntesis de 1,4 dihidropiridinas catalizada
por HCIO4-SiO2.

Otros investigadores como S.S. Mansoor et al.⁴³ también han utilizado ácido perclórico soportado en sílice gel en síntesis de 1,4 dihidropiridinas, pero a partir de dimedona (1 mmol), derivados de 1,3-difenil-2-propen-1-ona (1 mmol) y acetato de amonio (1 mmol) a 80°C libre de solvente. En 2020 Rahman A. et al.⁴⁴ compartieron el esquema de reacción de aldehído (1 mmol), acetoacetato de etilo (2 mmol), acetato de amonio

(2 mmol) y etanol (10 mL) a condiciones de reflujo en presencia de catálisis de Fe/SiO₂ (0.3022g) (Esquema **2**).

Esquema 2 Síntesis de 1,4 dihidropiridinas catalizada por Fe/SiO₂

Otros autores igualmente han aprovechado la catálisis heterogénea en la síntesis de Hantzsch como Wu P y colaboradores. ⁴⁵, Dekamin M, y colaboradores⁴⁶ (Esquema 3).

Esquema 3 Dos opciones para la síntesis de 1,4-dihidropiridina: A catalizador Fe-Mo-C-O y B catalizador ácido algínico. En ambos escenarios se puede observar en la Tabla 3 que el rendimiento se encuentra en un rango de 86% a 97%.

	Rendimiento %				
R	Fe-Mo-C-O Aleación	Ácido algínico			
	(0.1 mol%Mo) ⁴⁵	(1, 10 mol%)			
C_6H_5	96	97			
4-CH ₃ -C ₆ H ₅	86	92			
$4-OH-C_6H_4$	90	92			
2-Cl-C ₆ H ₄	90	86			
4-NO2-C6H4	96	89			

Tabla 3Resultados de rendimiento en la preparación de 1,4-dihidropiridinasaplicando catalizador Fe-Mo-C-O o ácido algínico.

Un mecanismo general para la síntesis de 1,4-DHPs catalizada por nanomateriales fue sugerido por Mathur R, Negi K, Shrivastava R, Nair R, (Esquema 4) iniciando con la activación del di carbonilo y el aldehído con las nanopartículas para generar el intermediario III por ataque nucleofílico, este intermediario también es activado por las nanopartículas facilitando el ataque nucleofílico de IV dando origen al intermediario V. El intermediario V pierde un protón para generar el compuesto VI vía ciclización. Obteniendo finalmente la 1,4-dihidropiridina después de unos pasos generales.⁴⁷

Esquema 4 Mecanismo general para la síntesis de 1,4 dihidropiridinas catalizada por nanomateriales.

Un estudio de la síntesis de Hantzsch manejo el catalizador de nitrato de cerio y amoniaco (CAN) llevando a cabo la reacción entre 5-bromotiofeno-2-carbozaldehído (0.01 mol). acetato de amonio (0.01 mol), acetoacetato de etilo (0.02 mol) y CAN (0.5 mmol), libre de solvente a temperatura ambiente.⁴⁸(Esquema **5**)

Esquema 5 Estrategia de acción multicomponente para la síntesis de 1,4dihidropiridina con catálisis de nitrato cerio y amoniaco.

El 2-hidroxietilamonio acetato líquido iónico (Figura 3) un excelente catalizador para la síntesis de derivados de 1,4-dihidropiridina vía reacción de Hantzsch. La catálisis fue activa en alcohol a reflujo teniendo rendimientos de 89%, 91% y 92% manejando el 4-metilbenzaldehído, 3-metoxi-4-hidroxibenzaldehído y benzaldehído respectivamente.⁴⁹

Figura 3 Catalizador líquido iónico de acetato de 2-hidroxietilamonio

El líquido iónico fue reusado en la misma reacción por al menos tres veces sin aparente perdida de actividad en términos de rendimiento como se muestra en la Tabla 4.

Uso	Rendimiento	Recobro del	
		catalizador	
	(%)	(%)	
Fresco	92	99	
1	91	98	
2	91	98	
3	90	97	

Tabla 4 Estudio en el reúso de 2-HEAA líquido iónico

Otras fuentes de energía

Las reacciones fotoquímicas son limpias y los productos obtenidos extremadamente puros, el tiempo de reacción se encuentra en un promedio de 5-10 min y los productos pueden ser aislados desde la mezcla de reacción en forma de cristales, enfriando en un baño de hielo.⁵⁰

La aplicación de irradiación ultrasónica en la reacción multicomponente entre 5amino-3-metil-1-fenilpirazol, aldehído aromático, dimedona en una relación 1:1:1 y 5 mL de etanol fue revisada por Devi et al., en su publicación de 2020⁵¹. la frecuencia del ultrasonido fue optimizada trabajando con el 2,4-dimetoxifenilaldehído. Ver resultados en la Tabla **5**.

Entrada	Frecuencia (W)	Tiempo (minutos)	Rendimiento (%)
1	50	15	57
2	100	9	98
3	150	12	91

Tabla 5Síntesis de 1,4-dihidropiridina bajo irradiación ultrasónica en diferentesfrecuencias

La aplicación de irradiación ultrasónica sumado a la catálisis heterogénea es publicada por Mokhtar et al., las condiciones de la irradiación ultrasónica fueron 320 W (máxima), temperatura del baño 60°C, cargaron 3.5 mmol de acetato de amonio y 0.1 g del catalizador, que consiste en nanotubos de fosfato de hierro impregnados con el 5% en peso de molibdeno (5W-FeP)., reportando rendimiento de 90 a 95%.¹⁵ Un estudio comparativo donde se evaluaron cuatro escenarios teniendo como base la síntesis multicomponente de Hantzsch con una relación 1:2:1 equivalentes del aldehído, acetoacetato y acetato de amonio es reportada por Prabhjot et al.,⁵², los resultados obtenidos se muestran en la Tabla **6** y se observa que los rendimientos más altos son los reportados en el método de microondas mientras los más bajos en el método libre de solvente.

Como se ha mencionado anteriormente la síntesis de Hantzsch es un método bien conocido, pero tiene algunas desventajas, incluido el uso de sólo acetoacetatos de alquilo como sustituyentes y la necesidad de una fuente de nitrógeno distinta, abre la exploración de técnicas innovadoras hacia la síntesis de 1,4 dihidropiridinas altamente

funcionalizadas superando los desafíos actuales de la química medicinal⁵³, una necesidad y una opción de cambio de la fuente de nitrógeno es el uso de N-tosilhidrazonas reportada por H. Wang, M. Tang catalizada por tricloruro de aluminio en cloroformo a temperatura ambiente⁵⁴, como se indica en el Esquema **6**.

Esquema 6 Síntesis de 1,4-dihidropiridinas aplicando como fuente de nitrógeno N-tosilhidrazonas.

Marco teórico

	Método								
	Convencional ^a		Microondas ^b Libre de solvente			le solvente ^c	Ultra sonicación ^d		
Producto	Tiempo (h)	Rendimiento (%)	Tiempo (min)	Rendimiento (%)	Tiempo (h)	Rendimiento (%)	Tiempo (min)	Rendimiento (%)	
	12	70	8	78	3	59	12	65	
HO	17	66	14	76	3	55	18	65	
MeO EtOOC HO NH EtOOC	17	62	14	77	2.5	58	16	66	
	22	67	16	70	3	53	18	61	

Tabla 6Porcentaje de rendimiento y tiempo de reacción

^a Etanol (15mL), reflujo. ^b 360 W etanol (10mL). ^C temperatura del baño de agua 80°C. ^d etanol (10mL)

QUÍMICA SOSTENIBLE

Generalidades

Nuestro nivel de vida mejoró con la revolución industrial, sin embargo, ni consumidores, ni científicos, ni tampoco las empresas pensaron que miles de toneladas de residuos contaminarían el aire, agua y suelo. Pronto graves problemas medioambientales fueron visibles, entonces el movimiento ecológico de reducción, reutilización y reciclaje comenzó, extendiendo el lema de sostenibilidad desde el siglo XX⁵⁵.

En el informe Brundtland en 1987 se definió el concepto de desarrollo sostenible ⁵⁶ como aquel que satisface las necesidades del presente sin comprometer la capacidad de las generaciones futuras para satisfacer sus propias necesidades. ⁵⁷A inicios del siglo XXI se introducen los 12 principios de la química verde que Tang et al.,⁵⁸ resume en la siguiente lista:

- 1. Disminución de residuos.
- 2. Materiales renovables.
- 3. Eliminar etapas que no agregan valor.
- 4. Productos degradables
- 5. Métodos de síntesis seguros
- 6. Uso de catalizadores.
- 7. Condiciones de temperatura y presión ambientales.

- 8. Monitoreo in situ
- 9. Minimizar el uso de substancias auxiliares
- 10. Eficacia del proceso
- 11. Minimizar toxicidad
- 12. Seguro

Biocatálisis con jugo de frutas

La química verde es una herramienta indispensable para el desarrollo sostenible, es decir, es la ciencia que tiene como objetivo el desarrollo de métodos y sustancias químicas para proteger el medio ambiente, entonces la química verde se enfoca en la reducción de desechos, además de ofrecer soluciones adecuadas en el campo de la economía, energía y seguridad⁵⁵.

Una causa primaria de producción de desechos en la manufactura química es el uso de reactivos inorgánicos como LiAIH₄, NaBH₄, AICI₃⁵⁹, ejemplo de su aplicación en la síntesis de dihidropiridinas se muestran en el Esquema **7**, otro origen de la generación de desechos son los solventes, los cuales están en el grupo de los materiales auxiliares, entonces pueden ser no necesarios.

Esquema 7 Síntesis de dihidropiridinas utilizando reactivos inorgánicos.

En este camino de la química verde y la síntesis de 1,4 dihidropiridinas como se documentó en páginas previas los investigadores han desarrollado diversas optimizaciones con fuentes de energía alternativas, solventes no tóxicos y utilización de catalizadores, esta tendencia sumada al trabajo de reacciones químicas con biocatalizadores como una herramienta verde y sostenible⁶⁰ está en continuo desarrollo.

La catálisis es y sigue siendo importante para el éxito de la síntesis orgánica, y un grupo emergente de la catálisis es la biocatálisis, la cual facilita la síntesis de moléculas orgánicas complejas, formación y ruptura de enlaces regio y estereoselectivos⁶¹.

Una opción de biocatálisis en la síntesis orgánica son los jugos de frutas, debido a sus propiedades ácidas, beneficios medioambientales, bajo costo y disponibilidad comercial. La actividad catalítica incluyendo la aplicación de jugo de frutas en transformaciones orgánicas como la formación de enlace C-C, C-N y rompimiento de

enlaces C-O, C-N se ha estudiado en diferentes compuestos orgánicos sintéticamente importantes, y la química de los jugos de frutas seguirá atrayendo una importante actividad de investigación⁶².

Algunos casos del desarrollo sintético teniendo como biocatalizador jugos naturales se describen en el Esquema 8.

Síntesis de base de Schiff.63

Síntesis de tetrahidropiridinas.64

Acilación de aminas.65

Esquema 8 Síntesis orgánica con biocatálisis de jugo de limón.
Las reacciones descritas en el Esquema 8 son ejemplo de la actividad biocatalítica del jugo de limón, esta característica se demuestra también en la síntesis de 1,4 dihidropiridinas.

Gadhave et al., reportan el procedimiento de una mezcla de aldehído aromático (1mmol), acetoacetato de etilo (2 mmol), acetato de amonio (1 mmol) y jugo de limón (0.050g) fueron calentados a 80°C y el producto obtenido fue 1,4 dihidropiridina (Esquema 9) con rendimientos mayores al 80%, algunos resultados de rendimiento con diversos aldehídos se describen en la Tabla 7.

Esquema 9 Síntesis de 1,4-dihidropiridina con biocatálisis de jugo de limón cítrico.²¹

Entrada	Aldehído	Rendimiento (%)
1	онс-	93
2	СІ ОНС	84
3	OHCNO2	97
4	онсОн	90
5	онс-	95

Tabla 7Rendimientos obtenidos en la síntesis de 1,4-dihidropiridina con
biocatálisis de jugo de limón

AGAVE SALMIANA

El territorio mexicano cuenta con alta diversidad en flora, por ejemplo, se encuentra el 75% de las especies de agave.²² El ciclo vital de los magueyes de donde se extrae el jugo de agave (agua miel), es aproximadamente de 15 a 20 años el cual inicia con la germinación de la semilla y el establecimiento de una plántula que va desarrollando hojas laterales hasta llegar a floración, fructificación y la planta muere luego de formar las semillas.⁶⁶

La bibliografía refiere diversos usos de agave entre los cuales se menciona como bioetanol, producción de enzimas⁶⁷ materia prima para la fabricación de mezcal, fuente de fibra y alimento²². También se están desarrollando nuevas aplicaciones como sustrato para el cultivo de hongo⁶⁸. El maguey por su alto contenido de carbohidratos ha sido utilizado como alimento a lo largo de la historia, entre los carbohidratos presentes destaca la inulina, utilizado como prebiótico debido a la capacidad selectiva de producir algunas bacterias benéficas en el colon. Estas bacterias aportan beneficios a la salud, refuerzan las funciones inmunológicas, aumentan la biodisponibilidad de minerales y mejoran el metabolismo de las grasas⁶⁹. Las plantas del género agave constituyen una población originaria de México.⁷⁰ Particularmente, *Agave salmiana* es empleado para la elaboración del pulque y ha sido empleado en la industria de mezcal y tequila.⁷¹

Una aplicación de agave en síntesis química es la desarrollada por U.P. Patil y colaboradores en la síntesis muticomponente de piranopirazoles y benzocromenos, utilizando como catalizador extracto acuoso de ceniza de hoja de *Agave americano*.

La NMX-V-022-1972 define el aguamiel como el jugo que se obtiene mediante el raspado previo del cajete o cavidad central del maguey pulquero, cultivado principalmente en los estados de México, Hidalgo y Tlaxcala, la NMX clasifica el aguamiel en dos tipos como se describe en la Tabla 8.

En una sección previa de este documento se mencionó que una característica química de los jugos de frutas como una opción de biocatálisis es un pH ácido, y en este escenario el *Agave salmiana* opción II puede ser un biocatalizador en síntesis orgánica.

Conforme a lo descrito en el estudio de Ma. Andrea Trejo-Márquez y colaboradores⁷³ el aguamiel que se extrae del maguey cultivado en el estado de México (pH 4.37 ± 0.01), Hidalgo (pH 6.40 ± 0.02) y Tlaxcala (pH 5.82 ± 0.02) está en el rango de pH ácido.

Especificaciones	I	Ш
рН	6.6 - 7.5	< 4.5
Densidad grados Baumé	5 - 7	< 4.5
Índice de refracción con el refractómetro de inmersión a 20°C	59 - 100	< 27
Sólidos totales g/100 mL	13 - 17	< 7
Azúcares reductores totales (en glucosa) g/100 mL	8 12	< 6
Azúcares reductores directos (en glucosa) g/100 mL	2 - 3	< 3
Gomas (en glucosa) g/100mL	2 - 6	< 0.20
Proteínas mg/100 mL	300 - 600	< 100
Cenizas mg/100 mL	300 - 430	< 180
Acidez mg/100 mL (como ácido láctico)	0.90 – 1.03	>4.00

Tabla 8Especificaciones para aguamiel tipo I y II conforme a NMX-V-022-197274

DISEÑO METODOLÓGICO

DISEÑO METODOLÓGICO

JUSTIFICACIÓN

En años recientes el uso de condiciones ambientales para llevar a cabo reacciones químicas se ha convertido en un campo de interés dentro de la rama de la química orgánica y ha sido objeto de números estudios por investigadores alrededor del mundo, además, es una necesidad para garantizar la sostenibilidad de la química. Se ha demostrado que las reacciones libres de solventes y el empleo de catalizadores de origen natural como lo son los extractos de frutas son una alternativa ambientalmente amigable en la realización de reacciones químicas, en general, estos procesos pueden ser más seguras y económicas.

El alcance de la investigación es tal que se pretende cambiar el paradigma del uso de sustancias potencialmente dañinas como los son los disolventes tradicionales, u otros reactivos tóxicos y cambiar la estrategia al uso de sustancias no perjudiciales, como los disolventes de origen natural, tal es el caso de los jugos de frutas, en este contexto se encuentra esta investigación con el uso del jugo de *Agave salmiana,* lo cual presenta particular atención en la frontera del conocimiento y en línea con los preceptos de la química verde.

En el presente trabajo de investigación se pretende obtener derivados de 1,4 dihidropiridinas, materiales con potencial actividad farmacológica como

vasodilatadores antitumorales, antiinflamatorio, antimicrobial, anticonvulsivo, analgésico, antituberculoso, entre otros, útiles para el fortalecimiento de la salud pública, a través de procesos amigables con el ambiente, utilizando como parte central del proceso el jugo de *Agave salmiana*, proveniente del maguey pulquero, planta endémica de la región. El jugo de *Agave salmiana* a modo de biocatalizador en la síntesis de Hantzsch, para crear una estrategia socialmente responsable y sostenible.

HIPÓTESIS.

Es posible formar 1,4 dihidropiridinas, moléculas con un potencial farmacológico importante a través de la reacción de aldehído, acetoacetato de etilo, una fuente de nitrógeno y el uso de jugo de *Agave salmiana* como un biocatalizador en un proceso sostenible.

OBJETIVOS

Objetivo general

Establecer un método de síntesis de 1,4 Dihidropiridinas, a través de la reacción multicomponente de Hantzsch, empleando aldehído, acetoacetato de etilo, una fuente de nitrógeno y como catalizador el jugo de *Agave salmiana*.

Objetivos específicos

- Establecer las condiciones óptimas de reacción como temperatura, volumen del biocatalizador (jugo de *Agave salmiana*) y fuente de nitrógeno, para la obtención del producto final en rendimientos competitivos respecto a reportes previos.
- Estudiar el efecto que tienen los grupos electrón atractores y electrón donadores presentes en los aldehídos en la formación de los derivados de 1,4dihidropiridinas a través de la síntesis de Hantzsch propuesta, utilizando la biocatálisis de jugo de *Agave salmiana*.
- Estudiar el efecto de diferentes fuentes de nitrógeno en la formación de los derivados de 1,4-dihidropiridinas a través de la síntesis de Hantzsch propuesta, utilizando la biocatálisis de jugo de Agave salmiana.
- Llevar a cabo el análisis espectroscópico de los productos obtenidos, con espectroscopia de infrarrojo y resonancia magnética nuclear.

VARIABLES

• Efecto de temperatura en reacción

Con el fin de optimizar las condiciones de reacción, se lleva a cabo la reacción modificando la temperatura, manteniendo constante el volumen de jugo de *Agave salmiana,* la fuente de nitrógeno y el aldehído.

• Efecto del volumen de jugo de Agave salmiana en reacción

Con el fin de optimizar las condiciones de reacción, se lleva a cabo la reacción modificando volumen de jugo de *Agave salmiana,* manteniendo constante la temperatura de reacción, la fuente de nitrógeno y el aldehído.

• Variación de la fuente de nitrógeno

Con el fin de optimizar las condiciones de reacción, se lleva a cabo la reacción modificando la fuente de nitrógeno, manteniendo constante el volumen de jugo de *Agave salmiana,* la temperatura de reacción y el aldehído.

METODOLOGÍA

Preparación de jugo de Agave salmiana

El jugo de *Agave salmiana* fue colectado de la planta de maguey pulquero de dos locaciones del Estado de México, Xonacatlán y Villa de Allende. El jugo de *Agave salmina* fue almacenado a temperatura de refrigeración (5°C+/-3°C).

Al jugo de *Agave salmiana* se le determino el pH, inicialmente con papel pH y posteriormente, utilizando un potenciómetro (pH= 4.36)

Método A, variación de la temperatura de reacción

Una mezcla de benzaldehído (0.1061g), acetoacetato de etilo (0.2603g), anilina (0.0931g) y jugo de *Agave salmiana* (1 mL) fueron cargados en un matraz de 50mL. La mezcla fue agitada y calentada conforme la Tabla 9. Después que la reacción se completó, la mezcla de reacción se llevó a temperatura ambiente, y el crudo de reacción fue lavado con salmuera y extraído con acetato de etilo. La fase orgánica fue separada, secada con sulfato de sodio anhidro y concentrado a presión reducida. El producto crudo fue purificado por recristalización en etanol caliente. El producto fue secado para obtener 1,4-dihidropiridina pura.

Entrada	Temperatura de	
	reacción °C	
1	90	
2	80	
3	60	
4	40	
5	ta	

Método B, variación del volumen de jugo de Agave salmiana

Una mezcla de benzaldehído (0.1061g), acetoacetato de etilo (0.2603g), anilina (0.0931g) y jugo de *Agave salmiana* (mL conforme a la Tabla 10) fueron cargados en un matraz de 50mL. La mezcla fue agitada a temperatura ambiente hasta que la reacción fue completada. Después que la reacción se completó, el crudo de reacción fue lavado con salmuera y extraído con acetato de etilo. La fase orgánica fue separada, secada con sulfato de sodio anhidro y concentrado a presión reducida. El producto crudo fue purificado por recristalización en etanol caliente. El producto fue secado para obtener 1,4-dihidropiridina pura.

Entrada	Jugo de <i>Agav</i> e		
	salmiana		
	(mL)		
1	20		
2	15		
3	10		
4	5		
5	1		
6	0		

Tabla 10Variación del volumen de jugo de Agave salmiana

Método C, variación del origen del nitrógeno

Una mezcla de benzaldehído (0.1061g), acetoacetato de etilo (0.2603g), fuente de nitrógeno (1 mmol) conforme a la Tabla **11** y jugo de *Agave salmiana* (1 mL) fueron cargados en un matraz de 50mL. La mezcla fue agitada a temperatura ambiente hasta que la reacción fue completada. Después que la reacción se completó, el crudo de reacción fue lavado con salmuera y extraído con acetato de etilo. La fase orgánica fue separada, secada con sulfato de sodio anhidro y concentrado a presión reducida. El producto crudo fue purificado por recristalización en etanol caliente. El producto fue secado para obtener 1,4-dihidropiridina pura.

Entrada	Fuente de nitrógeno
1	Cloruro de amonio
2	Oxalato de amonio
3	Anilina

Tabla 11Variación del origen del nitrógeno.

Método general para la síntesis de 1,4-dihidropiridinas

Una mezcla de benzaldehído aromático (1 mmol) ver Tabla 12, acetoacetato de etilo (0.2603g), anilina (0.0931g) y jugo de *Agave salmiana* (1 mL) fueron cargados en un matraz de 50mL. La mezcla fue agitada a temperatura ambiente hasta que la reacción fue completada (Esquema 10). Después que la reacción se completó, el crudo de reacción fue lavado con salmuera y extraído con acetato de etilo. La fase orgánica fue separada, secada con sulfato de sodio anhidro y concentrado a presión reducida. El producto crudo fue purificado por cromatografía en columna, el producto fue secado para obtener 1,4-dihidropiridina pura.

Entrada	Aldehído
1	2,5-diflurobenzaldehído
2	4-hidroxi-3-metoxibenzaldehído
3	2-Clorobenzaldehído
4	4-bromotiofen-2-carboxaldehído
5	4-dimetilaminobenzaldehído
6	4-hidroxibenzaldehído
7	2,4-diclorobenzaldehído
8	4-nitrobenzaldehído
9	Nicotinaldehído
10	4-metilbenzaldehído
11	2,6-diclorobenzaldehído

Tabla 12 Va	ariación del aldehído
-------------	-----------------------

Esquema 10 Síntesis de 1,4-dihidropiridina con biocatálisis de *Agave salmiana*

ANÁLISIS DE RESULTADOS

ANÁLISIS DE RESULTADOS

Figura 4 Productos sintetizados

En la figura 4 se ilustran los 16 productos sintetizados a través de una reacción multicomponente entre 1 mmol de una fuente de nitrógeno, 2 mmol de acetoacetato de etilo, 1 mmol de aldehído aromático y 1 mL de jugo de *Agave salmiana* como biocatalizador.

pH de jugo de Agave salmiana

El pH obtenido en el jugo de *Agave salmiana* es de 4.36 determinado con potenciómetro.

Método A, variación de la temperatura de reacción

En los cinco casos donde se varió la temperatura de la reacción se utilizaron los siguientes materiales: benzaldehído (0.1061g), acetoacetato de etilo (0.2603g), anilina (0.0931g) y jugo de *Agave salmiana* (1 mL), el producto aislado fue un sólido ligeramente amarillento identificado como dietil 2,6-dimetil-1,4-difenil-1,4-dihidropiridina-3,5-dicarboxilato (1), estructura confirmada con el análisis de espectroscopia de infrarrojo (IR), resonancia magnética nuclear de hidrógeno (¹H RMN) y resonancia magnética nuclear de carbono (¹³C RMN) y con punto de fusión (pf) de 130°C a 134°C.

Cinco diferentes temperaturas fueron revisadas (Tabla 13), iniciando con el experimento a temperatura ambiente monitoreado por cromatográfica en capa fina muestra la formación de 1,4 dihidropiridina a los sietes días en excelentes rendimientos (100%, entrada 5). El siguiente experimento se llevó a cabo a una

temperatura de 40°C buscando disminuir el tiempo de reacción, pero la formación del producto se completó hasta los 7 días y hubo una ligera disminución del rendimiento (96%, entrada 4), un comportamiento similar fue observado a 60°C y a temperaturas más altas el comportamiento de la reacción no fue el esperado, debido a que a 80°C el tiempo fueron tres días con un rendimiento similar al obtenido a 60°C, mientras que a 90°C el mejor rendimiento obtenido fue 55%.

Entrada	Temperatura	Rendimiento	Producto
	de reacción		
	°C	%	
1	90	55	
2	80	87	
3	60	85	1
4	40	96	
5	ta	100	

Tabla 13Rendimientos obtenidos en la síntesis de 1,4-dihidropiridina con
biocatálisis de Agave salmiana, variable temperatura de reacción.

Método B, variación del volumen de jugo de Agave salmiana

La reacción de benzaldehído (0.1061g), acetoacetato de etilo (0.2603g), anilina (0.0931g) agitada siete días a temperatura ambiente se llevó a cabo con 20mL, 15mL, 10mL, 5mL y 1mL de jugo de *Agave salmiana*, un blanco de reacción sin *Agave salmiana* también se desempeñó en el cual no se observó la formación de 1,4-dihidropiridina.

En los cinco escenarios donde se utilizó un volumen de jugo de *Agave salmiana* se obtuvo el compuesto **1** confirmado con el análisis de espectroscopia de infrarrojo (IR), resonancia magnética nuclear de hidrógeno (¹H RMN) y resonancia magnética nuclear de carbono (¹³C RMN) y con punto de fusión (pf) de 130°C a 134°C.

En los resultados obtenidos (Tabla 14) se puede observar que la reacción para la formación de 1,4 dihidropiridina con biocatalizador jugo de *Agave salmiana* (1mL) da un rendimiento entre 79% y 100% y no se observa una tendencia de incremento o disminución del rendimiento al aumentar el volumen de *Agave salmiana*.

Entrada	Jugo de	Rendimiento	Producto
	Agave salmiana		
	(mL)	(%)	
1	20	100	
2	15	88	
3	10	100	1
4	5	79	
5	1	100	

Tabla 14Rendimientos obtenidos en la síntesis de 1,4-dihidropiridina a
temperatura ambiente, variable volumen de jugo de Agave salmiana

Método C, variación del origen del nitrógeno

Después de la revisión y análisis de los resultados obtenidos en el método A y B, se concluye que el mejor rendimiento se obtiene a temperatura ambiente y el volumen de jugo de *Agave salmiana* no es una variable que afecte el rendimiento de la reacción, por lo anterior se seleccionó trabajar a temperatura ambiente con 1mL de jugo de *Agave salmiana* como biocatalizador, la síntesis de Hantzsch se desarrolló con diferentes fuentes de nitrógeno, como se describe en Esquema 11. Pero no en todos los escenarios se obtuvo el resultado esperado (Tabla 15), es el caso de las sales de amonio. Cuando se utilizó oxalato de amonio después de 48 horas no se observó reacción en el monitoreo por cromatografía en capa fina.

Esquema 11 Síntesis de 1,4-dihidropiridina a temperatura ambiente y biocatálisis de *Agave salmiana*, variable fuente de nitrógeno.

En la reacción con cloruro de amonio a las 24 horas se observó producto, y al concluir la reacción se aislaron trazas de dietil 2,6-dimetil-4-fenilpiridina-3,5-dicarboxilato punto de fusión 60-61°C⁷⁵ (**2**) (Esquema **12**), que corresponde a la dihidropiridina oxidada, considerando que el proceso de oxidación es una de las reacciones más comunes de las dihidropiridinas,⁷⁶ podemos decir que no es un producto inesperado.

Cuando se utiliza la anilina como fuente de nitrógeno se obtuvieron dos diferentes productos en reacciones independientes (entrada 1 y 4, Tabla 15)

En la entrada 1 se obtuvo el producto esperado 1,4 dihidropiridina (1), como en reacciones previas del método **A** y método **B**; mientras que en la entrada 4 el producto obtenido fue dietil 5-hidroxi-5-metil-1-(fenilamino)-3,4,5,6-tetrahidro-[3-fenil] ciclohexeno-2,4-dicarboxilato (3), con un rendimiento de 89%. La síntesis de N-arilciclohexilaminas ha sido previamente reportada⁷⁸, esta síntesis implica una aminación carbonílica directa. Mientras que en este trabajo la síntesis de ciclohexeno es producto de la reacción multicomponente de benzaldehído (0.1061g), acetoacetato de etilo (0.2603g) y anilina (0.0931g) con biocatálisis ácida de jugo de *Agave salmiana*.

Entrada	Fuente de nitrógeno	Producto	Rendimiento
			%
1	Anilina	1 ⁷⁹	100
2	Cloruro de amonio	2	Trazas
3	Oxalato de amonio	NA	ND
4	Anilina	3	89

Los productos que tienen referencia han sido informados previamente

Tabla 15Rendimientos obtenidos en la síntesis de 1,4-dihidropiridina a
temperatura ambiente con biocatálisis de jugo de Agave salmiana,
variable fuente de nitrógeno

Método general para la síntesis de 1,4-dihidropiridinas

Después de desarrollar las reacciones conforme lo descrito en el método A, B y C se definió que las condiciones óptimas de reacción fueran una mezcla de benzaldehído aromático (1 mmol), acetoacetato de etilo (0.2603g), anilina (0.0931g) con biocatálisis de jugo de *Agave salmiana* (1 mL) y temperatura ambiente. (Esquema **13**).

Esquema 13 Síntesis de 1,4-dihidropiridina a temperatura ambiente y biocatálisis de *Agave salmiana*.

La reacción se desarrolló satisfactoriamente con los diferentes aldehídos teniendo rendimientos de 74% a 100% en la obtención de 1,4 dihidropiridinas (Tabla 16, entradas 1,2,3,4,5,6,7 y 9). En todos los casos el tiempo de reacción fue de 7 días, solo cuando la reacción se realizó con 4-bromotiofen-2-carboxaldehído (Tabla 16, entrada 5) el tiempo de reacción disminuyo significativamente a 24 horas, esto puede

deberse al aumento del fenómeno electrofílico del aldehído para la formación del enlace carbono-carbono con el acetoacetato de etilo, lo anterior por el efecto electro atractor del -Br. Todos los productos fueron adecuadamente caracterizados por técnicas espectroscópicas, adicional fue posible el análisis de cristalografía por rayos X para compuesto 1 (Tabla 15) (Figura 5) y compuesto 4 (Tabla 16) (Figura 6)

Figura 5Estructura del cristal de dietil 2,6-dimetil-1,4-difenl-1,4-dihidropiridina-3,5-dicarboxilato obtenida por rayos X. CCDC 689471⁸⁰

Figura 6 Estructura del cristal de dietil 4-(2,5-difluorofenill)-2,6-dimetil-1-fenill-1,4dihidropiridina-3,5-dicarboxilato obtenida por rayos X. CCDC 2385271

Entrada	Aldehído	Rendimiento	Producto	Punto de fusión
		%		°C
1	онс	88	4	128-130
2	СІ ОНС-СІ	80	5	112-114
3	OHC OH	91	6 ⁸¹	136-140
4	ОНС	89	7	118-122
5	Br	90	8	100-102

Entrada	Aldehído	Rendimiento %	Producto	Punto de fusión °C
6	OHC-	88	9	138-142
7	онсон	74	10 ⁸²	134-136
8		90	11	148-152
		trazas	12	136-140
9	онс-	100	13	138-140
10	онс-	76	14	134-138
11		44	15	NA
12		trazas	16	58-60

Análisis de resultados

Los productos que tienen referencia han sido informados previamente

Tabla 16Rendimientos de dihidropiridinas producto de la síntesis de Hantzschbiocatalizada con jugo de Agave salmiana.

En la entrada 8 y 10 (Tabla 16) al igual que en la entrada 4 (Tabla 15) el producto obtenido fue N-arilciclohexilamina (3) con un rendimiento del 89%. En el caso de la entrada 8 se obtuvo un ciclohexeno pentasustituido (11) presentando un rendimiento de 90% como producto principal y trazas de 1,4 dihidropiridina (12). En la entrada 10 se obtuvo como único producto el ciclohexeno (14) reportando un rendimiento del 76%. Los tres productos (3, 11 y 14) fueron caracterizados por RMN utilizando análisis

a una dimensión como ¹H, ¹³C DEPT 90 y DEPT 135; y dos dimensiones como el COSY, HSQC y HMBC, adicional se obtuvo el análisis de rayos X del compuesto 11 (Figura 7), donde la presencia de un solo estereoisómero puede ser observada con tres centros esterogénicos; partiendo de esto se propone que la formación de este único estereoisómero se lleva a cabo a través de una reacción de cicloadición pericíclica de Diels-Alder [4+2] (Esquema 14)

Figura 7 Estructura del cristal de dietil 5-hidroxi-5-metil-1-(fenilamino)-3,4,5,6tetrahidro-[3-(4-nitro) fenil] ciclohexene-2,4-dicarboxilato obtenida por rayos X. CCDC 2385272.

Nosotros proponemos un mecanismo en la síntesis de los productos 3, 11 y 14, partiendo del ataque nucleofílico de la anilina VIII a la cetona del 1,3 dicarbonilo VII formando la correspondiente enamina X, esta enamina reacciona con el carbonilo del benzaldehído IX a través de un proceso de condensación aldólica formando el sistema α,β -insaturado XII. En el último paso propuesto del mecanismo de reacción el

compuesto **XII** en forma de su especie tautomérica enamina **XIII**, reacciona con la forma tautomérica enólica **XV** del acetoacetato de etilo **XIV**, que corresponde al respectivo dienófilo, para dar a través de un proceso de cicloadición [4+2] Diels-Alder el correspondiente derivado de ciclohexeno (Esquema 14).

Esquema 14 Mecanismo propuesto para la síntesis de N-arilciclohexilaminas a temperatura ambiente y biocatálisis de *Agave salmiana*.

Otros productos aislados en el desarrollo de esta investigación fue el compuesto **15**, entrada 11 (Tabla **16**) cuando la reacción se lleva a cabo con 2,6 diclorobenzaldehído el producto que se aíslo fue dietil 2-(2,6-diclorofenil)-4,6-dimetil-1,2-dihidropiridina-3,5-dicarboxilato, esto puede deberse a la presencia de cloro en las posiciones 2 y 6 del benzaldehído aromático utilizado, entonces cuando se lleva a cabo la última etapa del mecanismo de reacción el ataque de la enamina al dicarbonil α , β insaturado sucede directamente en el carbono de la cetona (**2**), y no en el carbono de la insaturación (**1**), como lo reporta Shen L. et al.⁸³ (Esquema **15**).

Esquema 15 Mecanismo de la síntesis de 1,2-dihidropiridina.

Con este escenario la reacción con 2,6 diclorobenzaldehído se lleva a cabo con la sal de amonio (Esquema 16) ampliamente utilizada en la reacción de Hantzsch⁸⁴ y sus optimizaciones ⁸⁵(NH₄OAc), observando el producto 1,2-dihidropiridina oxidada (entrada 12, Tabla 16).

Esquema 16 Síntesis de Hantzsch con biocatálisis de jugo de *Agave salmiana*

Mecanismo propuesto

Esquema 17 Mecanismo propuesto de la síntesis de 1,4-dihidropiridina a temperatura ambiente y biocatálisis de *Agave salmiana*.

CONCLUSIONES
CONCLUSIONES

 Se establece un método de síntesis de 1,4 Dihidropiridinas, a través de la reacción multicomponente de Hantzsch, utilizando aldehído, acetoacetato de etilo, anilina y como catalizador el jugo de *Agave Salmiana* (Esquema

Esquema 18 Método de síntesis

18)

• Se establecieron las siguientes condiciones óptimas de reacción:

Temperatura:	Ambiente
Volumen del biocatalizador:	De 1 a 20mL de jugo de Agave salmiana
Fuente de nitrógeno:	Anilina

- En la síntesis de 1,4 dihidropiridina no se observa variación en el rendimiento obtenido, atribuido a los grupos electrón atractores y electrón donadores, presentes en los aldehídos.
- En los dos casos donde se utilizaron sales de amono los productos obtenidos fueron piridinas
- Se obtuvo un derivado de 1,2 dihidropiridina, por un cambio en la reactividad de los materiales de partida, ocasionado por su demanda estérica.
- Finalmente, se obtuvo una cuarta familia de compuestos derivados de ciclohexeno, en tres de los experimentos realizados, y que anteriormente se informaron. La parte importante en este punto fue su elucidación estructural a través de la espectroscopia RMN 1D y 2D, así como la obtención de la cristalografía de rayos X, para uno de los ejemplos. Se propuso un mecanismo posible de formación a través de un proceso de cicloadición tipo Diels Alder.
- Se obtuvieron cuatro tipos diferentes de familias en este estudio, tres pertenecientes a compuestos heterocíclicos (1,4-dihidropiridina, 1,2dihidropiridina y piridina) y una de ciclohexeno (Figura 8).

Figura 8 Familia de productos obtenidos en la síntesis con biocatálisis de jugo de *Agave salmiana*.

BIBLIOGRAFIA

BIIBLIOGRAFIA

- 1. Edraki N, Mehdipour AR, Khoshneviszadeh M, Miri R. Dihydropyridines: evaluation of their current and future pharmacological applications. *Drug Discov Today*. 2009;14(21-22):1058-1066. doi:10.1016/j.drudis.2009.08.004
- Sharma VK, Singh SK. Synthesis, utility and medicinal importance of 1,2- & 1,4-dihydropyridines. RSC Adv. 2017;7(5):2682-2732. doi:10.1039/c6ra24823c
- 3. Yang J, Jiang C, Yang J, Qian C, Fang D. A clean procedure for the synthesis of 1,4-dihydropyridines via Hantzsch reaction in water. *Green Chem Lett Rev.* 2013;6(3):262-267. doi:10.1080/17518253.2013.781686
- 4. *INICA] REVIEW Amlodipine: A New Calcium Antagonist.*; 1994. https://academic.oup.com/ajhp/article/51/1/59/5178966
- 5. Sidhom PA, El-Bastawissy E, Salama AA, El-Moselhy TF. Revisiting ageless antiques; synthesis, biological evaluation, docking simulation and mechanistic insights of 1,4-Dihydropyridines as anticancer agents. *Bioorg Chem.* 2021;114. doi:10.1016/j.bioorg.2021.105054
- Indumathi S, Karthikeyan R, Jamal A, Nasser A, Idhayadhulla A, Surendra Kumar R. Anticonvulsant, analgesic and anti-inflammatory activities of some novel pyrrole and 1,4-dihydropyridine derivatives. Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research. 2015;7(2):434-440. www.jocpr.com
- Vijesh AM, Isloor AM, Peethambar SK, Shivananda KN, Arulmoli T, Isloor NA. Hantzsch reaction: Synthesis and characterization of some new 1,4-dihydropyridine derivatives as potent antimicrobial and antioxidant agents. *Eur J Med Chem*. 2011;46(11):5591-5597. doi:10.1016/j.ejmech.2011.09.026
- Ramírez-San Juan E, Soriano-Ursúa MA, Espinosa-Raya J, et al. Anticonvulsant effects of bis-1,4dihydropyridines and the probable role of L-type calcium channels suggested by docking simulations. *Medicinal Chemistry Research*. 2014;23(12):5149-5159. doi:10.1007/s00044-014-1083-0
- 9. Bijani S, Iqbal D, Mirza S, et al. Green Synthesis and Anticancer Potential of 1,4-Dihydropyridines-Based Triazole Derivatives: In Silico and In Vitro Study. *Life*. 2022;12(4). doi:10.3390/life12040519
- 10. Lentz F, Reiling N, Martins A, Molnár J, Hilgeroth A. Discovery of novel enhancers of isoniazid toxicity in mycobacterium tuberculosis. *Molecules*. 2018;23(4). doi:10.3390/molecules23040825

- 11. Wang X, Chen S, Cui H, He Y, Zhao C. Three-step synthetic procedure to prepare dolutegravir, cabotegravir, and bictegravir. *Green Chem Lett Rev.* 2022;15(2):311-318. doi:10.1080/17518253.2022.2057200
- 12. Rucins M, Kaldre D, Pajuste K, et al. Synthesis and studies of calcium channel blocking and antioxidant activities of novel 4-pyridinium and/or N-propargyl substituted 1,4-dihydropyridine derivatives. *Comptes Rendus Chimie*. 2014;17(1):69-80. doi:10.1016/j.crci.2013.07.003
- 13. Rucins M, Plotniece A, Bernotiene E, Tsai WB, Sobolev A. Recent approaches to chiral 1,4dihydropyridines and their fused analogues. *Catalysts*. 2020;10(9):1-21. doi:10.3390/catal10091019
- 14. Deb Cheniie A, drthuv Bantzsch von. Uelm Die Synthese Pyridinartiger Verbin Dungen %us Acotessigiither Und Aldehydainmcniak.
- 15. Mokhtar M, Saleh TS, Narasimharao K, Al-Mutairi E. New green perspective to dihydropyridines synthesis utilizing modified heteropoly acid catalysts. *Catal Today*. 2022;397-399:484-496. doi:10.1016/j.cattod.2021.07.006
- 16. Haack JA, Hutchison JE. Green chemistry education: 25 years of progress and 25 years ahead. ACS Sustain Chem Eng. 2016;4(11):5889-5896. doi:10.1021/acssuschemeng.6b02069
- 17. Pramanik A, Saha M, Bhar S. "On-Water" Catalyst-Free Ecofriendly Synthesis of the Hantzsch Dihydropyridines. *ISRN Org Chem*. 2012;2012:1-7. doi:10.5402/2012/342738
- Wang SX, Li ZY, Zhang JC, Li JT. The solvent-free synthesis of 1,4-dihydropyridines under ultrasound irradiation without catalyst. *Ultrason Sonochem*. 2008;15(5):677-680. doi:10.1016/j.ultsonch.2008.02.009
- Saha M, Roy S, Chaudhuri SK, Bhar S. Microwave-assisted ammonium formate-mediated synthesis of Hantzsch dihydropyridines under solvent-free conditions - A green protocol. *Green Chem Lett Rev.* 2008;1(2):99-102. doi:10.1080/17518250802095034
- Maheswara M, Siddaiah V, Rao YK, Tzeng YM, Sridhar C. A simple and efficient one-pot synthesis of 1,4-dihydropyridines using heterogeneous catalyst under solvent-free conditions. J Mol Catal A Chem. 2006;260(1-2):179-180. doi:10.1016/j.molcata.2006.07.024
- 21. Gadhave AG, Kadnor VA, Shirole GD, Uphade BK. *CITRUS LEMON JUICE MEDIATED A COST EFFECTIVE* ONE POT EFFICIENT SYNTHESIS OF 1, 4 DIHYDROPYRIDINES. Vol 11. http://heteroletters.org
- 22. La A, De R, Hugo H, Ramírez-Tobías M, Peña-Valdivia CB, Aguirre YJR. *RESPUESTAS BIOQUÍMICO-FISIOLÓGICAS DE ESPECIES DE AGAVE*. Vol 92.; 2014.
- Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. A review on recent advances in nitrogencontaining molecules and their biological applications. *Molecules*. 2020;25(8). doi:10.3390/molecules25081909

- 24. Mishra AP, Bajpai A, Rai AK. 1,4-Dihydropyridine: A Dependable Heterocyclic Ring with the Promising and the Most Anticipable Therapeutic Effects. *Mini-Reviews in Medicinal Chemistry*. 2019;19(15):1219-1254. doi:10.2174/1389557519666190425184749
- 25. Ling Y, Hao ZY, Liang D, Zhang CL, Liu YF, Wang Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. *Drug Des Devel Ther*. 2021;15:4289-4338. doi:10.2147/DDDT.S329547
- 26. Ioan P, Carosati E, Micucci M, et al. ,4-Dihydropyridine Scaffold in Medicinal Chemistry, The Story so Far And Perspectives (Part 1): Action in Ion Channels and GPCRs. Vol 18.; 2011.
- 27. Li CJ, Trost BM. Green Chemistry for Chemical Synthesis Green Chemistry for Chemical Synthesis Addresses Our Future Challenges in Working with Chemical Processes and Products by Invent-Ing Novel Reactions That Can Maximize the Desired Products and Minimize by-Products, Designing New Synthetic Schemes and Appa-Rati That Can Simplify Operations in Chemical Productions.; 2008. www.pnas.orgcgidoi10.1073pnas.0804348105
- 28. A. Hantzsch. A. Hantzsch: Condensationsprodukte aus Aldehydammoniak und ketonartigen Verbindungen. *Ber Dtsch Chem Ges.* 1881;14:1637-1638.
- 29. Prajapat P, Vaghani HV, Gupta S. *Synthetic and Medicinal Chemistry in Drug Discovery: Needs for Today.*; 2017. https://www.researchgate.net/publication/321803918
- 30. Carlson AP, Hänggi D, Macdonald RL, Shuttleworth CW. Nimodipine Reappraised: An Old Drug With a Future. *Curr Neuropharmacol*. 2019;18(1):65-82. doi:10.2174/1570159x17666190927113021
- 31. Kano T, akinuma C. Evaluation of the Inhibitory Effect of Dihydropyridineson N-Type Calcium Channel ByVirtualThree-Dimensional PharmacophoreModeling. Vol 59.; 2009.
- 32. Fernández-Lucas J. Biocatalysis: An Eco-Friendly Scenario for the Manufacturing of APIs. *Int J Mol Sci*. 2023;24(5). doi:10.3390/ijms24054474
- 33. Woodley JM. New opportunities for biocatalysis: making pharmaceutical processes greener. *Trends Biotechnol*. 2008;26(6):321-327. doi:10.1016/j.tibtech.2008.03.004
- Kumar A, Maurya RA, Sharma S, Kumar M, Bhatia G. Synthesis and biological evaluation of N-aryl-1,4-dihydropyridines as novel antidyslipidemic and antioxidant agents. *Eur J Med Chem*. 2010;45(2):501-509. doi:10.1016/j.ejmech.2009.10.036
- Praveenkumar E, Gurrapu N, Kumar Kolluri P, Yerragunta V, Reddy Kunduru B, Subhashini NJP. Synthesis, anti-diabetic evaluation and molecular docking studies of 4-(1-aryl-1H-1, 2, 3-triazol-4-yl)-1,4-dihydropyridine derivatives as novel 11-β hydroxysteroid dehydrogenase-1 (11β-HSD1) inhibitors. *Bioorg Chem*. 2019;90. doi:10.1016/j.bioorg.2019.103056
- 36. Rezayati S, Javanmardi P. *IRANIAN JOURNAL OF CATALYSIS Phospho Sulfonic Acid: An Efficient Solid Acid Catalyst for the Facile Preparation of 1,4-Dihydropyridines.* Vol 5.; 2015.

- Rathee G, Kohli S, Singh N, Awasthi A, Chandra R. Calcined Layered Double Hydroxides: Catalysts for Xanthene, 1,4-Dihydropyridine, and Polyhydroquinoline Derivative Synthesis. ACS Omega. 2020;5(25):15673-15680. doi:10.1021/acsomega.0c01901
- Radadiya A, Khedkar V, Bavishi A, et al. Synthesis and 3D-QSAR study of 1,4-dihydropyridine derivatives as MDR cancer reverters. *Eur J Med Chem*. 2014;74:375-387. doi:10.1016/j.ejmech.2014.01.011
- Zeynizadeh B, Gilanizadeh M. Microwave-promoted three-component Hantzsch synthesis of acridinediones under green conditions. *Current Chemistry Letters*. 2020;9(2):71-78. doi:10.5267/j.ccl.2019.8.001
- 40. Yiu SH, Knaus EE. An improved synthesis of high-purity felodipine. *Org Prep Proced Int*. 1996;28(1):91-95. doi:10.1080/00304949609355911
- 41. Neto BAD, Rocha RO, Rodrigues MO. Catalytic approaches to multicomponent reactions: A critical review and perspectives on the roles of catalysis. *Molecules*. 2022;27(1). doi:10.3390/molecules27010132
- 42. Maheswara M, Siddaiah V, Rao YK, Tzeng YM, Sridhar C. A simple and efficient one-pot synthesis of 1,4-dihydropyridines using heterogeneous catalyst under solvent-free conditions. *J Mol Catal A Chem*. 2006;260(1-2):179-180. doi:10.1016/j.molcata.2006.07.024
- Mansoor SS, Aswin K, Logaiya K, Sudhan PN, Malik S. Silica-supported perchloric acid (HClO4-SiO2): A mild, reusable and highly efficient heterogeneous catalyst for multicomponent synthesis of 1,4dihydropyridines via unsymmetrical Hantzsch reaction. In: *Research on Chemical Intermediates*. Vol 40.; 2014:357-369. doi:10.1007/s11164-012-0968-0
- 44. Rahman A, Nehemia PN, Nyambe MM. An efficient method for the synthesis of dihydropyridine by Hantzsch reaction with Fe/SiO2 nano heterogeneous catalysts. *Bulletin of Chemical Reaction Engineering and Catalysis*. 2020;15(3):617-630. doi:10.9767/BCREC.15.3.7669.617-630
- 45. Wu P, Feng L, Liang Y, Zhang X, Mahmoudi B, Kazemnejadi M. Magnetic Fe-C-O-Mo alloy nano-rods prepared from chemical decomposition of a screw (a top-down approach): An efficient and cheap catalyst for the preparation of dihydropyridine and dihydropyrimidone derivatives. *Appl Catal A Gen*. 2020;590. doi:10.1016/j.apcata.2019.117301
- 46. Dekamin MG, Ilkhanizadeh S, Latifidoost Z, Daemi H, Karimi Z, Barikani M. Alginic acid: a highly efficient renewable and heterogeneous bio-polymeric catalyst for one-pot synthesis of the Hantzsch 1,4-dihydropyridines Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX. 2014;4:0-00. doi:10.1039/c0xx00000x

- 47. Mathur R, Negi KS, Shrivastava R, Nair R. Recent developments in the nanomaterial-catalyzed green synthesis of structurally diverse 1,4-dihydropyridines. *RSC Adv*. 2021;11(3):1376-1393. doi:10.1039/d0ra07807g
- 48. Sharma MG, Rajani DP, Patel HM. Green approach for synthesis of bioactive Hantzsch 1,4dihydropyridine derivatives based on thiophene moiety via multicomponent reaction. *R Soc Open Sci.* 2017;4(6). doi:10.1098/rsos.170006
- 49. Kang LQ, Cao ZJ, Lei ZJ. 2-Hydroxyethylammonium acetate: An efficient and reusable homogeneous catalyst for the synthesis of Hantzsch 1, 4-dihydropyridines. *Monatsh Chem*. 2016;147(6):1125-1128. doi:10.1007/s00706-015-1587-4
- 50. Ghosh S, Saikh F, Das J, Pramanik AK. Hantzsch 1,4-dihydropyridine synthesis in aqueous ethanol by visible light. *Tetrahedron Lett*. 2013;54(1):58-62. doi:10.1016/j.tetlet.2012.10.079
- 51. Devi L, Nagaraju K, Maddila S, Jonnalagadda SB. A green, efficient protocol for the catalyst-free synthesis of tetrahydro-1H-pyrazolo-[3,4-b]-quinolin-5(4H)-ones supported by ultrasonicirradiation. *Chemical Data Collections*. 2020;30. doi:10.1016/j.cdc.2020.100566
- 52. Prabhjot Kaur HSRRDNP and RKS, Heena Sharma, Rekha Rana, D.N. Prasad, Rajesh K. Singh. Comparative Study of Various Green Chemistry Approaches for the Efficient Synthesis of 1,4-Dihydropyridines. Published online 2012:5649-5651.
- 53. Parthiban A, Makam P. 1,4-Dihydropyridine: synthetic advances, medicinal and insecticidal properties. *RSC Adv*. 2022;12(45):29253-29290. doi:10.1039/d2ra04589c
- 54. Wang H, Tang M. Aluminum Chloride Promoted Hantzsch Reaction of N -Tosylhydrazones. *Synthesis* (*Germany*). 2017;49(21):4893-4898. doi:10.1055/s-0036-1588496
- 55. GÜR B, KARAGÖLGE Z. Sustainable Chemistry: Green Chemistry. *Journal of the Institute of Science and Technology*. 2016;6(2):89-89. doi:10.21597/jist.2016218851
- 56. Choy YK. 28 years into "Our Common Future": sustainable development in the post-Brundtland world. In: ; 2015:1197-1211. doi:10.2495/sd151032
- 57. Sheldon RA. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. *ACS Sustain Chem Eng*. 2018;6(1):32-48. doi:10.1021/acssuschemeng.7b03505
- 58. Tang SLY, Smith RL, Poliakoff M. Principles of green chemistry: Productively. *Green Chemistry*. 2005;7(11):761-762. doi:10.1039/b513020b
- 59. Sheldon RA. Atom Utilisation, E Factors and the Catalytic Solution. Vol 3.; 2000.
- 60. Sheldon RA, Woodley JM. Role of Biocatalysis in Sustainable Chemistry. *Chem Rev.* 2018;118(2):801-838. doi:10.1021/acs.chemrev.7b00203

- 61. Nestl BM, Hammer SC, Nebel BA, Hauer B. New generation of biocatalysts for organic synthesis. *Angewandte Chemie - International Edition*. 2014;53(12):3070-3095. doi:10.1002/anie.201302195
- 62. Pal R. Fruit Juice: A Natural, Green and Biocatalyst System in Organic Synthesis. *Open Journal of Organic Chemistry*. 2013;1(4):47. doi:10.12966/ojoc.10.02.2013
- 63. Patil S, Jadhav SD, Patil UP. *Natural Acid Catalyzed Synthesis of Schiff Base under Solvent-Free Condition: As a Green Approach*. Vol 2012. www.scholarsresearchlibrary.com
- 64. Khan MM, Khan S, Saigal, Sahoo SC. Efficient and Eco-Friendly One-Pot Synthesis of Functionalized Furan-2-one, Pyrrol-2-one, and Tetrahydropyridine Using Lemon Juice as a Biodegradable Catalyst. *ChemistrySelect*. 2018;3(5):1371-1380. doi:10.1002/slct.201702933
- 65. Das D. Lemon juice mediated efficient and eco-friendly organic transformations. *Tetrahedron Lett*. 2020;61(36). doi:10.1016/j.tetlet.2020.152298
- 66. Vázquez Díaz E, Rodolfo J, Nava G, Peña Valdivia CB, Ramírez Tobías HM, Ramos VM. TAMAÑO DE LA SEMILLA, EMERGENCIA Y DESARROLLO DE LA PLÁNTULA DE MAGUEY (Agave Salmiana Otto Ex Salm-Dyck) SEED SIZE, EMERGENCE AND SEEDLING DEVELOPMENT OF MAGUEY (Agave Salmiana Otto Ex Salm-Dyck).
- 67. Plascencia A, Gutiérrez-Mora A, Rodríguez-Domínguez JM, et al. Molecular weight distribution of fructans extracted from Agave salmiana leaves Distribución de tamaños de fructanos extraídos a partir de hojas de Agave salmiana. *Bot Sci*. 2020;1(1). doi:10.17129/botsci.2960
- 68. Velizquez-De Lucio AS, Téllez-Jurado A, Hernindez-Domfnguez EM, et al. Evaluation of bagasse Agave salmiana as a substrate for the cultivation of Pleurotus djamor. *Revista Mexicana de Ingeniera Quimica*. 2022;21(1). doi:10.24275/rmiq/Bio2735
- 69. Mexico E DE. Conocimiento, Etnotaxonomía y Aprovechamiento Del Maguey Pulquero En MAESTRA EN CIENCIAS CAMPUS MONTECILLO POSTGRADO EN BOTÁNICA.
- 70. Luis GM, Caballero VP, González WR, et al. Valor nutricional y medicinal del pulque Valor nutricional y medicinal del pulque Nutritional and medicinal value of pulque This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License Valor nutricional y medicinal del pulque. JONNPR. 2019;12(12):1291-1303. doi:10.19230/jonnpr.3148
- 71. Robles-Arias M, Guzmán-Rodríguez F, Cruz-Guerrero A. Evaluation of the Suitability of Agave salmiana Leaves for Fructooligosaccharydes Recovery. *ACS Food Science and Technology*. Published online July 19, 2024. doi:10.1021/acsfoodscitech.3c00668
- 72. Patil UP, Patil RC, Patil SS. An Eco-friendly Catalytic System for One-pot Multicomponent Synthesis of Diverse and Densely Functionalized Pyranopyrazole and Benzochromene Derivatives. *J Heterocycl Chem*. 2019;56(7):1898-1913. doi:10.1002/jhet.3564

- 73. Ma Andrea TM, Adela LVA. *Caracterización de Aguamiel y Jarabe de Agave Originario Del Estado de México, Hidalgo y Tlaxcala. RESUMEN.* Vol 3.; 2018.
- 74. NMX-V-022-1972. AGUAMIEL. HYDROMEL. NORMAS.
- 75. Da Silva AF, De Simone CA, Sant'ana AEG, Pereira MA, Malta VRS. *Crystal Structure of Diethyl 4-Phenyl-2,6-Dimethyl-3,5-Pyridinedicarboxylate, C19H21NO4, an Multidrug Resistance Reversal Agent from Jatropha Elliptica*. Vol 220.; 2005.
- 76. Eisner U, Kuthant J. Chemical Reviews THE CHEMISTRY OF DIHYDROPYRIDINES Con Tents.
- 77. Rahimi J, Niksefat M, Heidari M, et al. Ammonium metavanadate (NH4VO3): a highly efficient and eco-friendly catalyst for one-pot synthesis of pyridines and 1,4-dihydropyridines. *Sci Rep*. 2022;12(1). doi:10.1038/s41598-022-17378-7
- 78. Sorokin V V, Kriven'ko AP, Vinogradova NA, Plotnikov OP. SYNTHESIS AND ANTIPHAGE ACTIVITY OF SUBSTITUTED N-ARYLCYCLOHEXENYLAMINES. Vol 35.; 2001.
- 79. Bandyopadhyay D, Maldonado S, Banik BK. A microwave-assisted Bismuth nitrate-catalyzed unique route toward 1,4-dihydropyridines. *Molecules*. 2012;17(3):2643-2662. doi:10.3390/molecules17032643
- Mahendra M, Doreswamy BH, Sridhar MA, et al. Synthesis and structural conformation of Nsubstituted 1,4-dihyropyridine derivatives. *Crystal Research and Technology*. 2006;41(1):92-97. doi:10.1002/crat.200310539
- Radadiya A, Khedkar V, Bavishi A, et al. Synthesis and 3D-QSAR study of 1,4-dihydropyridine derivatives as MDR cancer reverters. *Eur J Med Chem*. 2014;74:375-387. doi:10.1016/j.ejmech.2014.01.011
- Kumar JA, Shridhar G, Ladage S, Ravishankar L. Synthesis of 1,4-dihydropyridine esters using lowmelting sugar mixtures as green solvents. *Synth Commun.* 2016;46(24):1989-1998. doi:10.1080/00397911.2016.1242750
- 83. Shen L, Cao S, Wu J, et al. A revisit to the Hantzsch reaction: Unexpected products beyond 1,4dihydropyridines. *Green Chemistry*. 2009;11(9):1414-1420. doi:10.1039/b906358g
- 84. Najafi Z, Alaei M, Bahmani A, Akbarzadeh T, Hariri R, Chehardoli G. Fused 1,4-Dihydropyridines and Their Corresponding Pyridines: Synthesis, Molecular Modeling and Cholinesterase Inhibition. *ChemistrySelect*. 2023;8(19). doi:10.1002/slct.202300219
- 85. Ali AS, Al-Mathkuri TSF. Synthesis and Study of the Effect New Pyrazoles and Oxadiazole Linked to the 1,4-Dihydropyridine Ring on Breast Cancer. *Journal of Chemical Health Risks*. 2023;13(4):701-719. doi:10.22034/jchr.2023.1996251.1817

ANEXOS

ANEXO 1

Diethyl 2,6-dimethyl-1,4-diphenyl-1,4-dihydropiridine-3,5-dicarboxylate

(1), method A $90^{\circ}C$

Slightly yellowish solid. Yield 55%. Melting point $130^{\circ}-134^{\circ}$ C, IR $v_{máx}$ (cm⁻¹): 3028, 2930, 1682, 1632, 1491. C₂₅H₂₇NO₄; MW 405.49g/mol; ¹H NMR (500 MHz, Chloroform-d) δ 7.48 – 7.35 (m, 5H), 7.32 – 7.23 (m, 2H), 7.21 – 7.15 (m, 1H), 7.16 – 7.09 (m, 2H), 5.15 (s, 1H), 4.14 (qd, J = 7.1, 1.8 Hz, 4H), 2.06 (s, 6H), 1.25 (td, J = 7.2, 1.8 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 168.12 (d, J = 1.9 Hz), 147.21, 147.11, 140.47, 130.30, 129.41, 128.62, 128.02, 127.53, 126.16, 105.87, 59.95, 38.81, 18.63, 14.25.

(1), method A $80^{\circ}C$

Slightly yellowish solid. Yield 87%. Melting point $130^{\circ}-134^{\circ}$ C, IR $v_{máx}$ (cm⁻¹): 3028, 2931, 1682, 1632, 1491. C₂₅H₂₇NO₄; MW 405.49g/mol; ¹H NMR (500 MHz, Chloroform-d) δ 7.47 – 7.38 (m, 5H), 7.29 (dd, J = 8.4, 6.9 Hz, 2H), 7.20 – 7.12 (m, 3H), 5.15 (s, 1H), 4.14 (q, J = 7.1 Hz, 4H), 2.05 (d, J = 3.3 Hz, 6H), 1.26 – 1.21 (m, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 168.12, 147.21, 147.13, 140.47, 130.30, 129.42, 128.64, 128.04, 127.54, 126.18, 105.89, 59.95, 38.82, 18.64, 18.60, 14.27. (1), method A 60°C

Slightly yellowish solid. Yield 85%. Melting point $130^{\circ}-134^{\circ}$ C, IR $v_{máx}$ (cm⁻¹): 3029, 2930, 1683, 1632, 1491. C₂₅H₂₇NO4; MW 405.49g/mol; ¹H NMR (500 MHz, Chloroform-d) δ 7.46 – 7.37 (m, 5H), 7.29 (dd, J = 7.4, 1.9 Hz, 2H), 7.21 – 7.11 (m, 3H), 5.15 (d, J = 2.1 Hz, 1H), 4.14 (qd, J = 7.1, 2.1 Hz, 4H), 2.07 – 2.04 (m, 6H), 1.25 (td, J = 7.1, 2.0 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 168.13, 147.21, 147.11, 140.47, 130.30, 130.29, 129.41, 128.62, 128.02, 127.53, 126.16, 105.87, 76.99, 59.95, 38.81, 18.63, 14.25.

(1), method A 40° C

Slightly yellowish solid. Yield 96%. Melting point 130°-134°C, IR $v_{máx}$ (cm⁻¹): 3028, 2931, 1682, 1632, 1491. C₂₅H₂₇NO₄; MW 405.49g/mol; ¹H NMR (500 MHz, Chloroform-d) δ 7.47 – 7.34 (m, 5H), 7.31 – 7.24 (m, 2H), 7.18 (ddq, J = 7.6, 6.7, 1.2 Hz, 1H), 7.16 – 7.08 (m, 2H), 5.15 (s, 1H), 4.18 – 4.05

(m, 4H), 2.05 (s, 6H), 1.25 (td, J = 7.1, 0.8 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 163.38, 142.46, 135.72, 125.55, 124.66, 123.88, 123.27, 122.78, 121.41, 101.12, 55.20, 34.06, 13.90, 13.88, 9.50.

(1), method A room temperature

Slightly yellowish solid. Yield 100%. Melting point $130^{\circ}-134^{\circ}$ C, IR $v_{máx}$ (cm⁻¹): 3028, 2930, 1682, 1632, 1491. C₂₅H₂₇NO₄; MW 405.49g/mol; ¹H NMR (500 MHz, Chloroform-d) δ 7.48 – 7.36 (m, 5H), 7.29 (td, J = 7.5, 1.5 Hz, 2H), 7.21 – 7.11 (m, 3H), 5.15 (s, 1H), 4.14 (qd, J = 6.5, 5.9, 2.2 Hz, 4H), 2.05 (d, J = 1.2 Hz, 6H), 1.25 (td, J = 7.1, 1.0 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 168.13, 168.12, 147.21, 147.20, 140.47, 140.46, 130.29, 129.41, 129.40, 128.63, 128.61, 128.02, 128.01, 127.53, 127.52, 126.16, 126.15, 105.87, 105.86, 59.94, 38.81, 38.80, 18.63, 18.62, 14.25, 14.24.

(1), method B 20mL agave salmiana juice

Slightly yellowish solid. Yield 100%. Melting point $130^{\circ}-134^{\circ}$ C, IR $v_{máx}$ (cm⁻¹): 3027, 2931, 1682, 1630, 1492. C₂₅H₂₇NO₄; MW 405.49g/mol; ¹H NMR (300 MHz, Chloroform-d) δ 7.46 – 7.28 (m, 5H), 7.20 (d, J = 7.7 Hz, 2H), 7.16 – 6.99 (m, 3H), 5.08 (s, 1H), 4.07 (q, J = 7.0 Hz, 4H), 1.99 (d, J = 2.4 Hz, 6H), 1.18 (td, J = 7.3, 3.0 Hz, 6H). ¹³C NMR (75 MHz, Chloroform-d) δ 168.15, 147.23, 147.14, 130.32, 129.43, 128.65, 128.04, 127.55, 126.18, 105.90, 59.98, 38.83, 18.65, 14.27.

(1), method B 15mL agave salmiana juice

Slightly yellowish solid. Yield 88%. Melting point $130^{\circ}-134^{\circ}$ C, IR $v_{máx}$ (cm⁻¹): 3028, 2924, 1681, 1631, 1491. C₂₅H₂₇NO₄; MW 405.49g/mol; ¹H NMR (300 MHz, Chloroform-d) δ 7.46 – 7.26 (m, 5H), 7.23 – 7.16 (m, 2H), 7.15 – 7.01 (m, 3H), 5.08 (s, 1H), 4.07 (qd, J = 7.1, 1.9 Hz, 4H), 1.99 (d, J = 2.1 Hz, 6H), 1.18 (td, J = 7.2, 2.0 Hz, 6H). ¹³C NMR (75 MHz, Chloroform-d) δ 168.15, 147.23, 147.14, 140.50, 130.33, 129.43, 128.65, 128.04, 127.55, 126.18, 105.90, 59.97, 38.83, 18.65, 14.27.

(1), method B 10mL agave salmiana juice

Slightly yellowish solid. Yield 100%. Melting point $130^{\circ}-134^{\circ}$ C, IR $v_{máx}$ (cm⁻¹): 3028, 2931, 1682, 1632, 1491. C₂₅H₂₇NO₄; MW 405.49g/mol; ¹H NMR (300 MHz, Chloroform-d) δ 7.51 – 7.38 (m, 5H), 7.35 – 7.26 (m, 2H), 7.24 – 7.12 (m, 3H), 5.18 (s, 1H), 4.17 (q, J = 7.1 Hz, 4H), 2.08 (s, 6H), 1.27 (t, J = 7.1 Hz, 6H).¹³C NMR (75 MHz, Chloroform-d) δ 168.15, 147.23, 147.14, 140.49, 130.33, 129.44, 128.65, 128.05, 127.55, 126.19, 105.90, 59.97, 38.84, 18.66, 14.28.

(1), method B 5mL agave salmiana juice

Slightly yellowish solid. Yield 79%. Melting point $130^{\circ}-134^{\circ}$ C, IR $v_{máx}$ (cm⁻¹): 3029, 2930, 1683, 1632, 1491. C₂₅H₂₇NO₄; MW 405.49g/mol; ¹H NMR (500 MHz, Chloroform-d) δ 7.45 – 7.37 (m, 5H), 7.28 (ddt, J = 7.9, 6.5, 1.5 Hz, 2H), 7.21 – 7.11 (m, 3H), 5.15 (s, 1H), 4.14 (qt, J = 7.1, 1.5 Hz, 4H), 2.05 (t, J = 1.5 Hz, 6H), 1.25 (tt, J = 7.1, 1.5 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 168.12, 147.21, 147.11, 140.47, 130.30, 129.41, 128.62, 128.02, 127.53, 126.16, 105.87, 59.95, 38.80, 18.63, 14.25.

(1), method B 1mL agave salmiana juice

Slightly yellowish solid. Yield 100%. Melting point $130^{\circ}-134^{\circ}$ C, IR $v_{máx}$ (cm⁻¹): 3028, 2930, 1682, 1632, 1491. C₂₅H₂₇NO₄; MW 405.49g/mol; ¹H NMR (500 MHz, Chloroform-d) δ 7.48 – 7.36 (m, 5H), 7.29 (td, J = 7.5, 1.5 Hz, 2H), 7.21 – 7.11 (m, 3H), 5.15 (s, 1H), 4.14 (qd, J = 6.5, 5.9, 2.2 Hz, 4H), 2.05 (d, J = 1.2 Hz, 6H), 1.25 (td, J = 7.1, 1.0 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 168.13, 168.12, 147.21, 147.20, 140.47, 140.46, 130.30, 130.29, 129.41, 129.40, 128.63, 128.61, 128.02, 128.01, 127.53, 127.52, 126.16, 126.15, 105.87, 105.86, 59.95, 38.81, 38.80, 18.63, 18.62, 14.25, 14.24

Diethyl 2,6-dimethyl-1,4-diphenyl-1,4-dihydropiridine-3,5-dicarboxylate (1)

Slightly yellowish solid. Yield 100%. Melting point $130^{\circ}-134^{\circ}$ C, IR $v_{máx}$ (cm⁻¹): 3028, 2930, 1682, 1632, 1491. C₂₅H₂₇NO₄; MW 405.49g/mol; ¹H NMR (500 MHz, Chloroform-d) δ 7.48 – 7.36 (m, 5H), 7.29 (td, J = 7.5, 1.5 Hz, 2H), 7.21 – 7.11 (m, 3H), 5.15 (s, 1H), 4.14 (qd, J = 6.5, 5.9, 2.2 Hz, 4H), 2.05 (d, J = 1.2 Hz, 6H), 1.25 (td, J = 7.1, 1.0 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 168.13, 168.12, 147.21, 147.20, 140.47, 140.46, 130.30, 130.29, 129.41, 129.40, 128.63, 128.61, 128.02, 128.01, 127.53, 127.52, 126.16, 126.15, 105.87, 105.86, 59.95, 38.81, 38.80, 18.63, 18.62, 14.25, 14.24

Diethyl 2,6-dimethyl-4-phenylpyridine-3,5-dicarboxylate (2)

Yellow crystalline solid. Yield traces. Melting point 60-61°C IR $v_{máx}$ (cm⁻¹): 3069, 2816, 1678, 1580, 1497. C₁₉H₂₁NO₄; MW 327.38g/mol; ¹H NMR (300 MHz, Chloroform-d) δ 7.54 – 7.40 (m, 5H), 4.36 (q, J = 7.1 Hz, 4H), 2.45 (s, 6H), 1.29 (t, J = 7.1 Hz, 6H). ¹³C NMR (75 MHz, Chloroform-d) δ 171.29, 164.48, 140.56, 133.77, 130.21, 129.70, 128.93, 128.50, 61.59, 31.23, 14.18.

Diethyl 5-hydroxy-5-methyl-1-(phenylamino)-3,4,5,6-tetrahydro-[3-phenyl] cyclohexene-2,4dicarboxylate (**3**)

White solid. Yield 89%. Melting point 130-132°C, IR $v_{máx}$ (cm⁻¹): 3512, 3300; 3061, 2937, 1726, 1636, 1613. C₂₅H₂₉NO₅; MW 423.51g/mol; ¹H NMR (300 MHz, Chloroform-d) δ 10.76 (s, 1H), 7.41 – 7.31 (m, 2H), 7.26 – 7.09 (m, 8H), 4.21 (dd, J = 10.8, 1.6 Hz, 1H), 4.06 (qd, J = 7.1, 1.3 Hz, 2H), 3.96 – 3.71 (m, 2H), 3.34 (d, J = 2.1 Hz, 1H), 2.66 (d, J = 17.5 Hz, 1H), 2.58 – 2.45 (m, 2H), 1.24 (s, 3H), 1.13 – 1.00 (m, 3H), 0.84 – 0.71 (m, 3H).¹³C NMR (75 MHz, Chloroform-d) δ 175.29, 169.80, 153.23, 146.51, 139.40, 129.06, 128.07, 127.18, 125.86, 125.42, 124.85, 95.67, 68.68, 60.74, 59.04, 58.44, 43.76, 40.31, 28.26, 14.02, 13.60.

Diethyl 4-(2,5-difluorophenyl)-2,6-dimethyl-1-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (**4**) Slightly yellowish crystalline solid. Yield 88%. Melting point $128^{\circ}-130^{\circ}$ C, IR $v_{máx}$ (cm⁻¹): 3068, 2930, 1686, 1634, 1492. C₂₅H₂₅F₂NO₄; MW 441.47g/mol; ¹H NMR (300 MHz, Chloroform-d) δ 7.53 – 7.39 (m, 3H), 7.25 – 7.18 (m, 2H), 7.09 (ddd, J = 9.1, 5.8, 3.1 Hz, 1H), 6.98 – 6.79 (m, 2H), 5.29 (s, 1H), 4.10 (q, J = 7.1 Hz, 4H), 2.03 (s, 6H), 1.23 (t, J = 7.1 Hz, 6H).¹³C NMR (75 MHz, Chloroform-d) δ 167.08, 159.33, 157.49, 154.26, 146.89, 139.68, 129.47, 128.72, 127.92, 116.45, 116.15, 115.58, 115.12, 113.42, 113.22, 103.07, 59.23, 34.47, 17.94, 13.25.

Diethyl 4-(2,4-dichlorophenyl)-2,6-dimethyl-1-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (**5**) Slightly yellowish solid. Yield 80%. Melting point 112°-114°C, IR $v_{máx}$ (cm⁻¹): 3051, 2934, 1696, 1588, 1196. C₂₅H₂₅Cl₂NO₄; MW 474.38g/mol; ¹H NMR (300 MHz, Chloroform-d) δ 7.52 – 7.39 (m, 4H), 7.31 (d, J = 2.2 Hz, 1H), 7.20 (td, J = 7.9, 7.5, 1.8 Hz, 3H), 5.47 (s, 1H), 4.11 (qq, J = 10.8, 7.1 Hz, 4H), 1.98 (s, 6H), 1.22 (t, J = 7.1 Hz, 6H).¹³C NMR (75 MHz, Chloroform-d) δ 168.13, 146.27, 143.79, 140.49, 133.17, 132.31, 131.72, 130.20, 129.57, 129.11, 128.78, 127.26, 105.29, 60.14, 37.29, 18.83, 14.26.

Diethyl 4-(4-hydroxy-3-methoxyphenyl)-2,6-dimethyl-1-phenyl-1,4-dihydropyridine-3,5dicarboxylate (6)

Beige solid. Yield 91%. Melting point $136^{\circ}-140^{\circ}$ C, IR $v_{máx}$ (cm⁻¹): 3402, 2978, 2920, 1678, 1577, 1197. C₂₆H₂₉NO₆; MW 451.52g/mol; ¹H NMR (300 MHz, Chloroform-d) δ 7.52 – 7.36 (m, 3H), 7.13 (dt, J = 7.4, 1.6 Hz, 2H), 6.98 (s, 1H), 6.84 (d, J = 1.1 Hz, 2H), 5.48 (d, J = 1.1 Hz, 1H), 5.08 (s, 1H), 4.16 (q, J = 7.1 Hz, 4H), 3.89 (s, 3H), 2.05 (s, 6H), 1.27 (t, J = 7.1 Hz, 6H). ¹³C NMR (75 MHz,

Chloroform-d) δ 166.08, 144.89, 143.90, 141.84, 138.37, 137.20, 128.14, 127.30, 126.51, 117.65, 111.76, 108.37, 103.87, 57.83, 53.63, 36.18, 27.56, 16.55, 12.23.

Diethyl 4-(2-chlorophenyl)-2,6-dimethyl-1-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (7)

Beige solid. Yield 89%. Melting point $118^{\circ}-122^{\circ}$ C, IR $v_{máx}$ (cm⁻¹): 3068, 2934, 1691, 1577, 1197. C₂₅H₂₆ClNO₄; MW 439.94g/mol; ¹H NMR (300 MHz, Chloroform-d) δ 7.56 – 7.39 (m, 4H), 7.28 (dd, J = 7.9, 1.4 Hz, 1H), 7.24 – 7.17 (m, 3H), 7.09 (td, J = 7.6, 1.7 Hz, 1H), 5.53 (s, 1H), 4.10 (qq, J = 10.8, 7.1 Hz, 4H), 1.98 (s, 6H), 1.21 (t, J = 7.1 Hz, 6H). ¹³C NMR (75 MHz, Chloroform-d) δ 168.08, 145.67, 144.77, 140.37, 132.23, 130.49, 130.02, 129.23, 128.41, 127.21, 126.66, 105.44, 59.79, 37.22, 18.50, 13.96.

Diethyl 4-(4-bromothiophen-2-yl)-2,6-dimethyl-1-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (**8**) Beige solid. Yield 90%. Melting point 100°-102°C, IR $v_{máx}$ (cm⁻¹): 3117, 2980, 2901, 1683, 1631, 1194. C₂₃H₂₄BrNO₄S; MW 490.41g/mol; ¹H NMR (300 MHz, Chloroform-d) δ 7.49 – 7.38 (m, 3H), 7.18 – 7.09 (m, 2H), 7.02 (d, J = 1.5 Hz, 1H), 6.85 (dd, J = 1.5, 0.9 Hz, 1H), 5.39 (s, 1H), 4.30 – 4.13 (m, 4H), 2.07 (s, 6H), 1.30 (t, J = 7.1 Hz, 6H). ¹³C NMR (75 MHz, Chloroform-d) δ 166.37, 152.05, 147.51, 139.01, 129.30, 128.50, 127.86, 124.70, 119.41, 107.90, 103.74, 59.27, 33.20, 17.52, 13.34. Diethyl 4-(4-(dimethylamino) phenyl)-2,6-dimethyl-1-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (**9**)

Orange solid. Yield 88%. Melting point $138^{\circ}-142^{\circ}$ C, IR $v_{máx}$ (cm⁻¹): 2982, 2894, 1683, 1634, 1194. C₂₇H₃₂N₂O₄; MW 448.56g/mol; ¹H NMR (300 MHz, Chloroform-d) δ 7.43 (qt, J = 5.1, 2.2 Hz, 3H), 7.27 (dd, J = 6.8, 2.0 Hz, 2H), 7.20 – 7.12 (m, 2H), 6.74 – 6.66 (m, 2H), 5.03 (s, 1H), 4.13 (qd, J = 7.1, 1.2 Hz, 4H), 2.92 (s, 6H), 2.04 (s, 6H), 1.26 (t, J = 7.1 Hz, 6H). ¹³C NMR (75 MHz, Chloroform-d) δ 167.81, 148.65, 146.18, 140.16, 135.18, 129.84, 128.82, 127.99, 127.69, 111.98, 105.78, 59.34, 40.27, 37.20, 18.12, 13.77.

Diethyl 4-(4-hydroxyphenyl)-2,6-dimethyl-1-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (**10**) Off white solid. Yield 74%. Melting point 134°-136°C, IR $v_{máx}$ (cm⁻¹): 3393, 2982, 2901, 1662, 1569, 1200. C₂₅H₂₇NO₅; MW 421.49g/mol; ¹H NMR (300 MHz, Chloroform-d) δ 7.53 – 7.37 (m, 3H), 7.23 (s, 1H), 7.18 – 7.08 (m, 2H), 6.78 – 6.66 (m, 2H), 5.07 (s, 1H), 4.95 (s, 1H), 4.14 (q, J = 7.1 Hz, 4H), 2.04 (s, 6H), 1.25 (t, J = 7.1 Hz, 6H). ¹³C NMR (75 MHz, Chloroform-d) δ 168.11, 153.78, 146.73, 140.29, 139.39, 130.08, 129.21, 128.51, 128.42, 115.79, 114.64, 105.92, 59.80, 37.84, 18.47, 14.05. Diethyl 5-hydroxy-5-methyl-1-(phenylamino)-3,4,5,6-tetrahydro-[3-(4-nitro) phenyl] cyclohexene-2,4-dicarboxylate (**11**)

Slightly yellowish crystalline solid. Yield 90%. Melting point 148-152°C, IR $v_{máx}$ (cm⁻¹): 3471, 3200; 2980, 2903, 1712, 1649. C₂₅H₂₈N₂O₇; MW 468.51g/mol; ¹H NMR (300 MHz, Chloroform-d) δ 10.88 (s, 1H), 8.25 – 8.06 (m, 2H), 7.36 (pd, J = 4.4, 2.6, 2.2 Hz, 4H), 7.24 – 7.07 (m, 3H), 4.33 (d, J = 11.3 Hz, 1H), 4.15 – 3.96 (m, 2H), 3.83 (qd, J = 7.1, 4.6 Hz, 2H), 3.21 (d, J = 2.0 Hz, 1H), 2.64 (d, J = 17.5 Hz, 1H), 2.57 – 2.41 (m, 2H), 1.23 (s, 3H), 1.05 (t, J = 7.1 Hz, 3H), 0.77 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-d) δ 172.20, 166.88, 152.75, 152.12, 144.00, 136.52, 126.84, 125.72, 123.29, 123.04, 121.16, 91.30, 66.27, 58.73, 56.91, 55.52, 41.47, 37.95, 25.83, 11.76, 11.43,

Diethyl 4-(4-nitrophenyl)-2,6-dimethyl-1-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (**12**) Yellow crystalline solid. Yield traces. Melting point 136°-140°C, IR $v_{máx}$ (cm⁻¹): 2983, 2904, 1677, 1516, 1191. C₂₅H₂₆N₂O₆; MW 450.49g/mol; ¹H NMR (300 MHz, Chloroform-d) δ 8.20 – 8.12 (m, 2H), 7.61 – 7.52 (m, 2H), 7.52 – 7.40 (m, 3H), 7.11 (dd, J = 5.0, 2.5 Hz, 2H), 5.24 (s, 1H), 4.15 (q, J = 7.1 Hz, 4H), 2.07 (s, 6H), 1.25 (t, J = 7.1 Hz, 6H). ¹³C NMR (75 MHz, Chloroform-d) δ 166.30, 153.27, 146.85, 145.19, 138.76, 128.81, 128.38, 127.69, 127.08, 122.21, 103.47, 58.98, 37.96, 17.52, 13.00.

Diethyl 2',6'-dimethyl-1'-phenyl-1',4'-dihydro-[3,4'-bipyridine]-3',5'-dicarboxylate (13)

Beige solid. Yield 100%. Melting point 138°-140°C, IR $v_{máx}$ (cm⁻¹): 2978, 2905, 1685, 1573, 1195. C₂₄H₂₆N₂O₄; MW 406.48g/mol; ¹H NMR (300 MHz, Chloroform-*d*) δ 8.66 (d, *J* = 2.3 Hz, 1H), 8.43 (dd, *J* = 4.8, 1.7 Hz, 1H), 7.70 (dt, *J* = 7.9, 2.0 Hz, 1H), 7.52 – 7.38 (m, 3H), 7.22 (dd, *J* = 7.9, 4.8 Hz, 1H), 7.18 – 7.09 (m, 2H), 5.13 (s, 1H), 4.14 (q, *J* = 7.1 Hz, 4H), 2.06 (s, 6H), 1.25 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 167.13, 148.94, 147.46, 146.96, 141.94, 139.64, 134.73, 129.66, 129.05, 128.32, 122.61, 104.41, 59.62, 36.58, 18.20, 13.73.

Diethyl 5-hydroxy-5-methyl-1-(phenylamino)-3,4,5,6-tetrahydro-[3-(4-methyl) phenyl] cyclohexene-2,4-dicarboxylate (**14**)

White solid. Yield 76%. Melting point 134-138°C, IR $v_{máx}$ (cm⁻¹): 3509, 3200; 2975, 2850, 1718, 1625. C₂₆H₃₁NO₅; MW 437.54g/mol; ¹H NMR (300 MHz, Chloroform-*d*) δ 10.70 (s, 1H), 7.33 (t, *J* = 7.7 Hz, 2H), 7.20 – 7.06 (m, 3H), 7.03 (s, 4H), 4.20 – 4.11 (m, 1H), 4.05 (q, *J* = 7.1 Hz, 2H), 3.93 – 3.71 (m, 2H), 3.31 (d, *J* = 2.0 Hz, 1H), 2.63 (d, *J* = 17.4 Hz, 1H), 2.56 – 2.41 (m, 2H), 2.30 (s, 3H), 1.21 (s, 3H), 1.07 (t, *J* = 7.1 Hz, 3H), 0.79 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ

175.16, 169.69, 152.80, 143.19, 139.29, 134.99, 128.88, 128.54, 126.86, 125.17, 124.58, 95.79, 68.56, 60.58, 58.90, 58.36, 43.10, 40.15, 30.77; 20.86, 13.91, 13.51.

Diethyl 4,6-dimethyl-2-(2,6-dichlorophenyl)-1-phenyl-1,2-dihydropyridine-3,5-dicarboxylate (15)

Ochre liquid. Yield 44%. IR $v_{máx}$ (cm⁻¹): 2983, 2874, 1700, 1429, 1192. C₂₅H₂₅Cl₂NO₄; MW 474.38g/mol; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.62 (d, *J* = 7.0 Hz, 2H), 7.35 – 7.29 (m, 4H), 7.21 (dddd, *J* = 9.1, 7.0, 5.7, 0.8 Hz, 3H), 4.35 (q, *J* = 7.1 Hz, 2H), 4.09 (q, *J* = 7.1 Hz, 2H), 2.50 (s, 3H), 2.34 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H), 0.99 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 163.44, 162.63, 138.27, 137.30, 137.20, 137.08, 132.25, 132.08, 131.20, 130.73, 128.76, 128.68, 126.73, 126.49 113.27, 60.51, 59.95, 28.34, 27.09, 12.80, 12.18.

Diethyl 4,6-dimethyl-2-(2,6-dichlorophenyl) pyridine-3,5-dicarboxylate (16)

Off white solid. Yield traces. Melting point 58-60°C; IR $v_{máx}$ (cm⁻¹): 2983, 2874, 1700, 1429, 1192. C₁₉H₁₉Cl₂NO₄; MW 396.27g/mol; ¹H NMR (300 MHz, Chloroform-*d*) δ 7.40 – 7.33 (m, 2H), 7.27 – 7.21 (m, 1H), 4.48 (q, *J* = 7.1 Hz, 2H), 4.07 (q, *J* = 7.1 Hz, 2H), 2.62 (s, 3H), 2.44 (s, 3H), 1.44 (t, *J* = 7.1 Hz, 3H), 0.95 (t, *J* = 7.1 Hz, 3H). 13C NMR (75 MHz, Chloroform-d) δ 167.50, 165.64, 155.45, 152.76, 143.37, 129.49, 133.98, 129.27, 127.18, 127.07, 61.24, 60.69, 22.38, 16.81, 13.56, 12.81.

Figure **S1**. (CDCl₃, 500 MHz) ¹H NMR spectra for the compound **1** method A 90°C

Figure S2. (CDCl₃, 126 MHz) ¹³C NMR spectra for the compound **1** method A 90°C

Figure S3. (CDCl₃, 500 MHz) ¹H NMR spectra for the compound **1** method A 80°C

Figure S4. (CDCl₃, 126 MHz) ¹³C NMR spectra for the compound **1** method A 80°C

Figure S5. (CDCl₃, 500 MHz) ¹H NMR spectra for the compound **1** method A 60°C

Figure S6. (CDCl₃, 126 MHz) ¹³C NMR spectra for the compound **1**method A 60°C

Figure S7. (CDCl₃, 500 MHz) ¹H NMR spectra for the compound **1** method A 40°C

Figure S8. (CDCl₃, 126 MHz) ¹³C NMR spectra for the compound **1** method A 40°C

Figure S9. (CDCl₃, 500 MHz) ¹H NMR spectra for the compound **1** method A room temperature

Figure S10. (CDCl₃, 126 MHz) ¹³C NMR spectra for the compound **1** method A room temperature

Figure S11. (CDCl₃, 300 MHz) ¹H NMR spectra for the compound **1** method B 20mL agave salmiana juice

Figure S12. (CDCl₃, 75 MHz) ¹³C NMR spectra for the compound **1** method B 20 mL agave salmiana juice

Figure S13. (CDCl₃, 300 MHz) ¹H NMR spectra for the compound **1** method B 15mL *agave salmiana* juice

-168.15

Figure S14. (CDCl₃, 75 MHz) ¹³C NMR spectra for the compound **1** method B 15 mL *agave salmiana* juice

97

Figure S15. (CDCl₃, 300 MHz) ¹H NMR spectra for the compound **1** method B 10mL agave salmiana juice

Figure S16. (CDCl₃, 75 MHz) ¹³C NMR spectra for the compound **1** method B 10mL agave salmiana juice

Figure S17. (CDCl₃, 500 MHz) ¹H NMR spectra for the compound **1** method B 5mL agave salmiana juice

Figure S18. (CDCl₃, 126 MHz) ¹³C NMR spectra for the compound **1** method B 5mL *agave salmiana* juice

4.5 4.0 f1 (ppm)

3.78-1

3.5

3.0

2.5

1.00-∓

5.0

5.5

5.88-1

2.0

6.10-I

1.0

0.5

1.5

5.22√ 2.11∓ 3.13√

7.0

6.5

6.0

7.5

8.5

8.0

Anexos

102

0.0

Figure S20. (CDCl₃, 126 MHz) ¹³C NMR spectra for the compound **1** method B 1mL agave salmiana juice

Figure S21. (CDCl₃, 500 MHz) ¹H NMR spectra for the compound 1 method C aniline as a source of nitrogen

Figure S22. (CDCl₃, 126 MHz) ¹³C NMR spectra for the compound 1 method C aniline as a source of nitrogen

Anexos

Figure S23. (CDCl₃, 300 MHz) ¹H NMR spectra for the compound 2 method C ammonium chloride as a source of nitrogen

Figure S24. (CDCl₃, 75 MHz) ¹³C NMR spectra for the compound 2 method C ammonium chloride as a source of nitrogen

Figure S25. (CDCl₃, 300 MHz) ¹H NMR spectra for the compound 3 method C aniline as a source of nitrogen

Figure S26. (CDCl₃, 75 MHz) ¹³C NMR spectra for the compound 3 method C aniline as a source of nitrogen

Figure S27. (CDCl₃, 300 MHz) NMR COSY spectra for the compound 3 method C aniline as a source of nitrogen

Figure S28. (CDCl₃, 75 MHz) NMR DEPT90 spectra for the compound 3 method C aniline as a source of nitrogen

Figure S29. (CDCl₃, 75 MHz) NMR DEPT135 spectra for the compound 3 method C aniline as a source of nitrogen

Figure S30. (CDCl₃, 300 MHz) NMR HSQC spectra for the compound 3 method C aniline as a source of nitrogen

Figure S31. (CDCl₃, 300 MHz) NMR HMBC spectra for the compound 3 method C aniline as a source of nitrogen

Figure S32. (CDCl₃, 300 MHz) ¹H NMR spectra for the compound 4

Figure S33. (CDCl₃, 75 MHz) ¹³C NMR spectra for the compound 4

Crystallographic Data of compound 4 (CCDC 2385271)

Summary of Data **CCDC 2385271**: Compound Name: diethyl 4-(2,5-difluorophenyl)-2,6-dimethyl-1-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (**4**); Formula: $C_{25}H_{25}F_2NO_4$; Unit Cell Parameters: a 9.3364(5) b 8.4873(12) c 28.2371(16) P21/c

Identification code	136CBD24_M23102328AIR_0m	Ý 14
Empirical formula	C25 H25 F2 N O4	
Formula weight	441.46	
Temperature	100(2) K	-
Wavelength	0.71073 Å	
Crystal system	Monoclinic	- and a for a de
Space group	P21/n	_
Unit cell dimensions	a = 9.3364(5) Å	$a = 90^{\circ}$. (4)
	b = 8.4873(5) Å	b=90.6719(12)
		۰.
	c = 28.2371(16) Å	$g = 90^{\circ}$.
Volume	2237.4(2) Å ³	
Z	4	
Density (calculated)	1.311 Mg/m ³	
Absorption coefficient	0.099 mm ⁻¹	
F (000)	928	
Crystal size	0.559 x 0.296 x 0.084 mm ³	
Theta range for data collection	2.290 to 27.445°.	
Index ranges	-12<=h<=12, -11<=k<=11, -36<=	<=36
Reflections collected	39836	
Independent reflections	5101 [R(int) = 0.0266]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5101 / 0 / 312	
Goodness-of-fit on F ²	1.014	
Final R indices [I>2sigma(I)]	R1 = 0.0362, wR2 = 0.0916	
R indices (all data)	R1 = 0.0421, wR2 = 0.0957	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.364 and -0.180 e.Å ⁻³	

 Table 1. Crystal data and structure refinement for 4.

Table 2 . Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10 ³)
For 4 U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.

	X	у	Z	U(eq)
F(1)	1930(1)	5204(1)	5331(1)	29(1)
F(2)	-278(1)	1069(1)	6584(1)	31(1)
F(1A)	2293(12)	2090(14)	6768(4)	34(3)
F(2A)	-994(14)	4032(17)	5291(5)	49(4)
O(1)	3618(1)	7926(1)	6831(1)	30(1)
O(2)	2780(1)	7212(1)	6116(1)	26(1)
O(3)	6190(1)	1407(1)	5537(1)	25(1)
O(4)	4339(1)	2887(1)	5289(1)	22(1)
N(1)	5025(1)	3057(1)	6939(1)	18(1)
C(1)	3778(1)	4301(1)	6096(1)	16(1)
C(2)	3933(1)	5254(1)	6549(1)	18(1)
C(3)	4445(1)	4580(1)	6953(1)	18(1)
C(4)	5331(1)	2314(1)	6508(1)	17(1)
C(5)	4835(1)	2944(1)	6097(1)	17(1)
C(6)	2246(1)	3701(1)	6031(1)	17(1)
C(7)	1377(1)	4185(1)	5656(1)	22(1)
C(8)	-16(1)	3680(2)	5591(1)	27(1)
C(9)	-599(1)	2624(2)	5908(1)	25(1)
C(10)	261(1)	2127(1)	6279(1)	22(1)
C(11)	1650(1)	2636(1)	6347(1)	18(1)
C(12)	3448(1)	6912(1)	6533(1)	21(1)
C(13)	2275(2)	8820(2)	6051(1)	34(1)
C(14)	1490(2)	8893(2)	5582(1)	50(1)
C(15)	4405(1)	5314(1)	7436(1)	23(1)
C(16)	5567(1)	2379(1)	7377(1)	18(1)
C(17)	6946(1)	2732(1)	7533(1)	21(1)
C(18)	7444(1)	2128(1)	7962(1)	26(1)
C(19)	6568(2)	1184(2)	8232(1)	31(1)
C(20)	5199(2)	833(2)	8075(1)	36(1)
C(21)	4696(1)	1422(2)	7644(1)	28(1)
C(22)	6142(1)	792(1)	6553(1)	22(1)
C(23)	5219(1)	2303(1)	5629(1)	18(1)
C(24)	4658(1)	2422(2)	4807(1)	26(1)
C(25)	3498(2)	3102(2)	4492(1)	36(1)

0.9500 0.9500

0.9900 0.9900 0.9800

0.9800 0.9800 0.9800 0.9800 0.9800

1.3800(16) 1.3882(15) 1.3905(15)

0.9500

0.9500 1.381(2) 0.9500

1.3810(19)

1.3908(17)

1.5076(17)

115.62(9)

0.9900 0.9900 0.9800 0.9800 0.9800

0.9500 0.9500 0.9800 0.9800 0.9800

1.5066(19)

F(1)-C(7)	1.3665(13)	C(10)-H(10)
F(2)-C(10)	1.3459(14)	C(11)-H(11)
F(1A)-C(11)	1.402(10)	C(13)-C(14)
F(2A)-C(8)	1.274(11)	C(13)-H(13A)
O(1)-C(12)	1.2132(14)	C(13)-H(13B)
O(2)-C(12)	1.3503(13)	C(14)-H(14A)
O(2)-C(13)	1.4550(14)	C(14)-H(14B)
O(3)-C(23)	1.2135(14)	C(14)-H(14C)
O(4)-C(23)	1.3497(13)	C(15)-H(15A)
O(4)-C(24)	1.4513(13)	C(15)-H(15B)
N(1)-C(4)	1.4021(14)	C(15)-H(15C)
N(1)-C(3)	1.4022(14)	C(16)-C(21)
N(1)-C(16)	1.4504(13)	C(16)-C(17)
C(1)-C(5)	1.5170(14)	C(17)-C(18)
C(1)-C(2)	1.5182(14)	C(17)-H(17)
C(1)-C(6)	1.5269(14)	C(18)-C(19)
C(1)-H(1)	1.0000	C(18)-H(18)
C(2)-C(3)	1.3575(14)	C(19)-C(20)
C(2)-C(12)	1.4791(15)	C(19)-H(19)
C(3)-C(15)	1.5005(15)	C(20)-C(21)
C(4)-C(5)	1.3554(14)	C(20)-H(20)
C(4)-C(22)	1.5018(15)	C(21)-H(21)
C(5)-C(23)	1.4777(14)	C(22)-H(22A)
C(6)-C(7)	1.3888(14)	C(22)-H(22B)
C(6)-C(11)	1.3912(15)	C(22)-H(22C)
C(7)-C(8)	1.3801(16)	C(24)-C(25)
C(7)-H(7)	0.9500	C(24)-H(24A)
C(8)-C(9)	1.3821(17)	C(24)-H(24B)
C(8)-H(8)	0.9500	C(25)-H(25A)
C(9)-C(10)	1.3793(15)	C(25)-H(25B)
C(9)-H(9)	0.9500	C(25)-H(25C)
C(10)-C(11)	1.3784(15)	C(12)-O(2)-C(13)

 Table 3.
 Bond lengths [Å] and angles [°] for 4.

C(23)-O(4)-C(24)	115.92(9)	C(7)-C(8)-C(9)	119.52(10)
C(4)-N(1)-C(3)	121.46(9)	C(7)-C(8)-H(8)	120.2
C(4)-N(1)-C(16)	119.22(9)	C(9)-C(8)-H(8)	120.2
C(3)-N(1)-C(16)	118.23(9)	C(10)-C(9)-C(8)	117.43(11)
C(5)-C(1)-C(2)	110.31(8)	C(10)-C(9)-H(9)	121.3
C(5)-C(1)-C(6)	110.85(9)	C(8)-C(9)-H(9)	121.3
C(2)-C(1)-C(6)	111.06(8)	F(2)-C(10)-C(11)	118.53(10)
C(5)-C(1)-H(1)	108.2	F(2)-C(10)-C(9)	118.19(10)
C(2)-C(1)-H(1)	108.2	C(11)-C(10)-C(9)	123.27(11)
C(6)-C(1)-H(1)	108.2	C(11)-C(10)-H(10)	118.4
C(3)-C(2)-C(12)	122.11(10)	C(9)-C(10)-H(10)	118.4
C(3)-C(2)-C(1)	120.84(10)	C(10)-C(11)-C(6)	119.77(10)
C(12)-C(2)-C(1)	117.00(9)	C(10)-C(11)-F(1A)	114.0(5)
C(2)-C(3)-N(1)	119.77(9)	C(6)-C(11)-F(1A)	126.0(5)
C(2)-C(3)-C(15)	125.23(10)	C(10)-C(11)-H(11)	120.1
N(1)-C(3)-C(15)	114.97(9)	C(6)-C(11)-H(11)	120.1
C(5)-C(4)-N(1)	119.64(10)	O(1)-C(12)-O(2)	121.76(10)
C(5)-C(4)-C(22)	125.28(10)	O(1)-C(12)-C(2)	128.04(10)
N(1)-C(4)-C(22)	114.99(9)	O(2)-C(12)-C(2)	110.18(9)
C(4)-C(5)-C(23)	122.53(10)	O(2)-C(13)-C(14)	107.64(11)
C(4)-C(5)-C(1)	121.10(9)	O(2)-C(13)-H(13A)	110.2
C(23)-C(5)-C(1)	116.27(9)	C(14)-C(13)-H(13A)	110.2
C(7)-C(6)-C(11)	116.59(10)	O(2)-C(13)-H(13B)	110.2
C(7)-C(6)-C(1)	122.08(10)	C(14)-C(13)-H(13B)	110.2
C(11)-C(6)-C(1)	121.33(9)	H(13A)-C(13)-H(13B)	108.5
F(1)-C(7)-C(8)	118.06(10)	C(13)-C(14)-H(14A)	109.5
F(1)-C(7)-C(6)	118.52(10)	C(13)-C(14)-H(14B)	109.5
C(8)-C(7)-C(6)	123.42(11)	H(14A)-C(14)-H(14B)	109.5
C(8)-C(7)-H(7)	118.3	C(13)-C(14)-H(14C)	109.5
C(6)-C(7)-H(7)	118.3	H(14A)-C(14)-H(14C)	109.5
F(2A)-C(8)-C(7)	133.1(6)	H(14B)-C(14)-H(14C)	109.5
F(2A)-C(8)-C(9)	107.3(6)	C(3)-C(15)-H(15A)	109.5

C(3)-C(15)-H(15B)	109.5	C(20)-C(21)-H(21)	120.2
H(15A)-C(15)-H(15B)	109.5	C(4)-C(22)-H(22A)	109.5
C(3)-C(15)-H(15C)	109.5	C(4)-C(22)-H(22B)	109.5
H(15A)-C(15)-H(15C)	109.5	H(22A)-C(22)-H(22B)	109.5
H(15B)-C(15)-H(15C)	109.5	C(4)-C(22)-H(22C)	109.5
C(21)-C(16)-C(17)	120.27(10)	H(22A)-C(22)-H(22C)	109.5
C(21)-C(16)-N(1)	119.83(10)	H(22B)-C(22)-H(22C)	109.5
C(17)-C(16)-N(1)	119.87(10)	O(3)-C(23)-O(4)	121.90(10)
C(16)-C(17)-C(18)	119.74(11)	O(3)-C(23)-C(5)	127.64(10)
C(16)-C(17)-H(17)	120.1	O(4)-C(23)-C(5)	110.43(9)
C(18)-C(17)-H(17)	120.1	O(4)-C(24)-C(25)	107.18(10)
C(19)-C(18)-C(17)	120.05(11)	O(4)-C(24)-H(24A)	110.3
C(19)-C(18)-H(18)	120.0	C(25)-C(24)-H(24A)	110.3
C(17)-C(18)-H(18)	120.0	O(4)-C(24)-H(24B)	110.3
C(20)-C(19)-C(18)	119.95(11)	C(25)-C(24)-H(24B)	110.3
C(20)-C(19)-H(19)	120.0	H(24A)-C(24)-H(24B)	108.5
C(18)-C(19)-H(19)	120.0	C(24)-C(25)-H(25A)	109.5
C(19)-C(20)-C(21)	120.38(12)	C(24)-C(25)-H(25B)	109.5
C(19)-C(20)-H(20)	119.8	H(25A)-C(25)-H(25B)	109.5
C(21)-C(20)-H(20)	119.8	C(24)-C(25)-H(25C)	109.5
C(16)-C(21)-C(20)	119.60(11)	H(25A)-C(25)-H(25C)	109.5
C(16)-C(21)-H(21)	120.2	H(25B)-C(25)-H(25C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
	27(1)	34(1)	25(1)	15(1)	-11(1)	-6(1)
F(2)	27(1) 20(1)	$\frac{34(1)}{46(1)}$	23(1) 28(1)	15(1) 16(1)	-11(1) 3(1)	-0(1)
F(2) $F(1\Delta)$	20(1) 30(6)	40(1) 45(7)	23(1) 27(5)	13(5)	-3(1)	-7(1)
$F(2\Delta)$	30(0) 39(7)	+3(7) 62(9)	45(7)	21(6)	-20(5)	1(6)
O(1)	41(1)	20(1)	30(1)	-4(1)	-20(3)	1(0) $1(1)$
O(2)	33(1)	20(1)	24(1)	0(1)	-8(1)	10(1)
O(2)	24(1)	20(1) 29(1)	27(1)	-5(1)	-3(1)	6(1)
O(3)	24(1) 25(1)	27(1)	15(1)	0(1)	-4(1)	3(1)
N(1)	17(1)	27(1) 22(1)	15(1) 16(1)	3(1)	-4(1)	2(1)
C(1)	17(1) 17(1)	17(1)	16(1)	2(1)	-5(1)	$\frac{2(1)}{1(1)}$
C(2)	16(1)	17(1) 18(1)	18(1)	-1(1)	-4(1)	-1(1)
C(2)	13(1)	21(1)	10(1) 19(1)	0(1)	-3(1)	-1(1)
C(4)	12(1)	19(1)	19(1)	1(1)	-2(1)	-1(1)
C(5)	12(1) 14(1)	17(1)	19(1)	0(1)	-3(1)	-1(1)
C(6)	16(1)	17(1)	17(1)	-2(1)	-5(1)	3(1)
C(7)	24(1)	22(1)	20(1)	$\frac{1}{4(1)}$	-6(1)	1(1)
C(8)	22(1)	32(1)	25(1)	4(1)	-12(1)	3(1)
C(9)	16(1)	32(1)	27(1)	1(1)	-7(1)	0(1)
C(10)	20(1)	24(1)	21(1)	2(1)	-2(1)	1(1)
C(11)	18(1)	20(1)	16(1)	0(1)	-5(1)	4(1)
C(12)	20(1)	20(1)	22(1)	0(1)	-3(1)	0(1)
C(13)	47(1)	23(1)	32(1)	1(1)	-8(1)	16(1)
C(14)	71(1)	44(1)	34(1)	-2(1)	-14(1)	36(1)
C(15)	23(1)	28(1)	18(1)	-2(1)	-4(1)	4(1)
C(16)	17(1)	20(1)	16(1)	3(1)	-3(1)	1(1)
C(17)	18(1)	20(1)	25(1)	4(1)	-5(1)	-2(1)
C(18)	28(1)	23(1)	28(1)	-1(1)	-14(1)	2(1)
C(19)	44(1)	30(1)	19(1)	6(1)	-7(1)	8(1)
C(20)	36(1)	40(1)	30(1)	18(1)	6(1)	-1(1)
C(21)	19(1)	36(1)	31(1)	10(1)	-1(1)	-5(1)
C(22)	20(1)	23(1)	22(1)	4(1)	-3(1)	5(1)
C(23)	18(1)	18(1)	19(1)	1(1)	-4(1)	-3(1)
C(24)	35(1)	28(1)	15(1)	-2(1)	-3(1)	2(1)
C(25)	38(1)	49(1)	20(1)	1(1)	-9(1)	1(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **4**. The anisotropic displacement factorexponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	X	у	Z	U(eq)
H(1)	4003	5005	5823	20
H(7)	1762	4901	5432	26
H(8)	-571	4055	5330	32
H(9)	-1554	2255	5871	30
H(10)	-124	1398	6499	26
H(11)	2199	2259	6609	22
H(13A)	3095	9560	6052	41
H(13B)	1626	9116	6311	41
H(14A)	1160	9973	5524	75
H(14B)	663	8182	5589	75
H(14C)	2135	8572	5328	75
H(15A)	3952	6354	7415	35
H(15B)	5384	5428	7560	35
H(15C)	3853	4640	7649	35
H(17)	7546	3385	7348	25
H(18)	8388	2365	8069	32
H(19)	6907	776	8526	37
H(20)	4597	186	8261	43
H(21)	3758	1167	7535	34
H(22A)	6246	317	6239	32
H(22B)	5618	69	6758	32
H(22C)	7093	997	6690	32
H(24A)	4673	1259	4780	32
H(24B)	5606	2834	4714	32
H(25A)	3689	2829	4162	54
H(25B)	3483	4251	4527	54
H(25C)	2569	2669	4583	54

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **4**

Table 6. Torsion angles [°] for 4.

C(5)-C(1)-C(2)-C(3)	-26.40(14)	C(6)-C(7)-C(8)-F(2A)	176.0(10)
C(6)-C(1)-C(2)-C(3)	96.91(11)	F(1)-C(7)-C(8)-C(9)	178.69(11)
C(5)-C(1)-C(2)-C(12)	156.13(9)	C(6)-C(7)-C(8)-C(9)	-0.75(19)
C(6)-C(1)-C(2)-C(12)	-80.56(11)	F(2A)-C(8)-C(9)-C(10)	-177.4(7)
C(12)-C(2)-C(3)-N(1)	-173.60(9)	C(7)-C(8)-C(9)-C(10)	0.16(18)
C(1)-C(2)-C(3)-N(1)	9.06(15)	C(8)-C(9)-C(10)-F(2)	-178.35(11)
C(12)-C(2)-C(3)-C(15)	8.64(17)	C(8)-C(9)-C(10)-C(11)	0.24(18)
C(1)-C(2)-C(3)-C(15)	-168.70(10)	F(2)-C(10)-C(11)-C(6)	178.50(10)
C(4)-N(1)-C(3)-C(2)	11.72(15)	C(9)-C(10)-C(11)-C(6)	-0.08(18)
C(16)-N(1)-C(3)-C(2)	179.70(9)	C(9)-C(10)-C(11)-F(1A)	174.9(6)
C(4)-N(1)-C(3)-C(15)	-170.30(9)	C(7)-C(6)-C(11)-C(10)	-0.46(16)
C(16)-N(1)-C(3)-C(15)	-2.32(13)	C(1)-C(6)-C(11)-C(10)	179.57(10)
C(3)-N(1)-C(4)-C(5)	-11.80(15)	C(7)-C(6)-C(11)-F(1A)	-174.8(6)
C(16)-N(1)-C(4)-C(5)	-179.67(9)	C(1)-C(6)-C(11)-F(1A)	5.3(6)
C(3)-N(1)-C(4)-C(22)	171.46(9)	C(13)-O(2)-C(12)-O(1)	-0.42(17)
C(16)-N(1)-C(4)-C(22)	3.60(14)	C(13)-O(2)-C(12)-C(2)	-178.76(10)
N(1)-C(4)-C(5)-C(23)	174.66(9)	C(3)-C(2)-C(12)-O(1)	11.71(18)
C(22)-C(4)-C(5)-C(23)	-8.97(17)	C(1)-C(2)-C(12)-O(1)	-170.85(11)
N(1)-C(4)-C(5)-C(1)	-8.93(15)	C(3)-C(2)-C(12)-O(2)	-170.08(10)
C(22)-C(4)-C(5)-C(1)	167.45(10)	C(1)-C(2)-C(12)-O(2)	7.36(13)
C(2)-C(1)-C(5)-C(4)	26.38(14)	C(12)-O(2)-C(13)-C(14)	-176.59(12)
C(6)-C(1)-C(5)-C(4)	-97.06(11)	C(4)-N(1)-C(16)-C(21)	-97.14(13)
C(2)-C(1)-C(5)-C(23)	-156.99(9)	C(3)-N(1)-C(16)-C(21)	94.61(13)
C(6)-C(1)-C(5)-C(23)	79.57(11)	C(4)-N(1)-C(16)-C(17)	84.80(13)
C(5)-C(1)-C(6)-C(7)	-121.25(11)	C(3)-N(1)-C(16)-C(17)	-83.46(13)
C(2)-C(1)-C(6)-C(7)	115.75(11)	C(21)-C(16)-C(17)-C(18)	-0.47(18)
C(5)-C(1)-C(6)-C(11)	58.71(13)	N(1)-C(16)-C(17)-C(18)	177.59(10)
C(2)-C(1)-C(6)-C(11)	-64.29(13)	C(16)-C(17)-C(18)-C(19)	-0.21(18)
C(11)-C(6)-C(7)-F(1)	-178.55(10)	C(17)-C(18)-C(19)-C(20)	0.35(19)
C(1)-C(6)-C(7)-F(1)	1.41(16)	C(18)-C(19)-C(20)-C(21)	0.2(2)
C(11)-C(6)-C(7)-C(8)	0.89(17)	C(17)-C(16)-C(21)-C(20)	1.00(19)
C(1)-C(6)-C(7)-C(8)	-179.15(11)	N(1)-C(16)-C(21)-C(20)	-177.06(12)

C(19)-C(20)-C(21)-C(16)	-0.9(2)	C(1)-C(5)-C(23)-O(3)	167.44(11)
C(24)-O(4)-C(23)-O(3)	-2.13(15)	C(4)-C(5)-C(23)-O(4)	165.59(10)
C(24)-O(4)-C(23)-C(5)	176.40(9)	C(1)-C(5)-C(23)-O(4)	-10.99(13)
C(4)-C(5)-C(23)-O(3)	-15.98(18)	C(23)-O(4)-C(24)-C(25)	176.10(10)

Symmetry transformations used to generate equivalent atoms:

Data of CCDC 2385271 contains the X-ray data in CIF format for this manuscript. These data can be obtained, free of charge, via <u>http://www.ccdc.cam.ac.uk/cgi-bin/catreq</u>. cgi (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1Ez, UK; fax +44 1223 336033; or e-mail: deposit@ccdc.cam.ac.uk)

Figure S35. (CDCl₃, 75 MHz) ¹³C NMR spectra for the compound 5

Figure **S36**. (CDCl₃, 300 MHz) ¹H NMR spectra for the compound **6**

Figure **S37**. (CDCl₃, 75 MHz) 13 C NMR spectra for the compound **6**

Figure **S38**. (CDCl₃, 300 MHz) ¹H NMR spectra for the compound **7**

Figure **S40**. (CDCl₃, 300 MHz) ¹H NMR spectra for the compound **8**

Figure **S42**. (CDCl₃, 300 MHz) ¹H NMR spectra for the compound **9**

Figure **S46**. (CDCl₃, 300 MHz) ¹H NMR spectra for the compound **11**

Figure **S48**. (CDCl₃, 300 MHz) NMR COSY spectra for the compound **11**

Figure **S51**. (CDCl₃, 300 MHz) NMR HSQC spectra for the compound **11**

Figure **S52**. (CDCl₃, 300 MHz) NMR HMBC spectra for the compound **11**

Crystallographic Data of compound 11 (CCDC 2385272)

Summary of Data CCDC 2385272: Compound: diethyl 3-hydroxy-3-methyl-4'-nitro-5-(phenylamino)-1,2,3,4-tetrahydro-[1,1'-biphenyl]-2,6-dicarboxylate (11); Formula: $C_{25}H_{29}N_2O_7$; Unit Cell Parameters: a 8.9892(9) b 10.7189(11) c 13.7939(14) P21/c

Table 7 . Crystal data and structure restriction	efinement for 11	appare .
Identification code	196CBD24_245_0m	- and
Empirical formula	C25 H28 N2 O7	
Formula weight	468.49	— I
Femperature	100(2) K	- 40
Wavelength	0.71073 Å	
Crystal system	Triclinic	
1Space group	P-1	(11)
(Unit cell dimensions	a = 8.9892(9) Å	$\alpha = 67.8725(17)^{\circ}.$
	b = 10.7189(11) Å	$\beta = 72.8171(18)^{\circ}$
	c = 13.7939(14) Å	$\gamma = 82.0181(18)^{\circ}.$
Volume	1175.7(2) Å ³	
2	2	
ensity (calculated)	1.323 Mg/m ³	
bsorption coefficient	0.097 mm	
(000)	496	
rystal size	0.626 x 0.313 x 0.286 m	m ³
heta range for data collection	2.052 to 27.445°.	
ndex ranges	-11<=h<=11, -13<=k<=	13, -17<=l<=17
eflections collected	34771	
ndependent reflections	5367 [R(int) = 0.0449]	
completeness to theta = 25.242°	100.0 %	
bsorption correction	None	
efinement method	Full-matrix least-square	s on F ²
ata / restraints / parameters	5367 / 354 / 410	
oodness-of-fit on F ²	1.052	
inal R indices [I>2sigma(I)]	R1 = 0.0532, wR2 = 0.1	528
R indices (all data)	R1 = 0.0578, wR2 = 0.1	608
Extinction coefficient	n/a	
argest diff. peak and hole	0.491 and -0.344 e.Å ⁻³	

_		_		
	Х	у	Z	U(eq)
O(1)	7152(1)	1724(1)	9572(1)	27(1)
O(4)	5165(2)	1726(1)	3488(1)	38(1)
O(5)	4892(1)	3885(1)	3074(1)	33(1)
N(1)	5261(1)	2763(1)	3644(1)	26(1)
N(2)	9839(1)	4808(1)	7454(1)	30(1)
C(1)	6237(1)	2856(1)	9090(1)	22(1)
C(2)	5816(1)	2727(1)	8122(1)	20(1)
C(3)	7283(1)	2360(1)	7346(1)	20(1)
C(4)	8632(1)	3237(1)	7102(1)	22(1)
C(5)	8607(1)	4045(1)	7678(1)	21(1)
C(6)	7251(1)	4079(1)	8621(1)	20(1)
C(7)	4785(2)	3051(2)	9942(1)	$\frac{1}{30(1)}$
$\Gamma(8)$	4548(2)	1722(2)	8516(2)	23(1)
D(2)	3183(1)	2324(1)	8381(1)	27(1)
D(3)	4741(3)	518(3)	8931(2)	27(1)
(9)	1866(2)	1455(2)	8716(2)	34(1)
$\Gamma(10)$	2016(3)	734(2)	7942(2)	43(1)
$\Gamma(8A)$	4788(13)	1547(10)	8406(13)	26(1)
(2A)	3548(8)	2040(7)	7992(6)	28(1)
(3A)	5087(15)	2070(7) 377(14)	8836(14)	25(1)
$\Gamma(9\Delta)$	2416(10)	1068(9)	8163(8)	30(1)
$\Gamma(10\Delta)$	1080(12)	1060(0)	9074(8)	40(1)
$\Gamma(10A)$	6829(1)	2464(1)	6335(1)	20(1)
$\Gamma(12)$	6401(2)	1321(1)	6246(1)	20(1) 29(1)
$\Gamma(12)$	5911(2)	1321(1) 1408(1)	5356(1)	$\frac{2}{31(1)}$
$\Gamma(14)$	5840(1)	2660(1)	4564(1)	23(1)
$\Gamma(14)$	5340(1) 6261(2)	2000(1) 3816(1)	4504(1)	23(1) 23(1)
$\Gamma(15)$	6760(2)	3707(1)	5514(1)	23(1) 22(1)
$\Gamma(10)$	10076(7)	2037(6)	5314(1)	22(1) 23(1)
(17)	9973(3)	1833(3)	6184(3)	23(1) 22(1)
(0)	11250(11)	3504(7)	6052(0)	22(1) 27(1)
$\Gamma(18)$	11230(11)	1519(4)	5/17(3)	27(1) 26(1)
$\Gamma(10)$	11213(4)	2271(3)	4275(3)	20(1) 35(1)
$\Gamma(17)$	10032(8)	2271(3) 3218(6)	4273(3)	$\frac{33(1)}{24(1)}$
(1/A)	10032(8) 10012(3)	3210(0) 2270(3)	5702(3)	24(1) 25(1)
$\mathcal{O}(0\mathbf{A})$	10012(3) 11100(11)	2279(3) 3006(7)	5800(0)	23(1) 31(1)
V(18A)	11135(11)	3300(7)	3030(3)	$\frac{31(1)}{28(1)}$
$\Gamma(10A)$	11333(3)	2170(4) 1176(2)	4910(3)	20(1)
$\Gamma(20)$	10910(4)	5615(1)	4322(3) 8005(1)	41(1) 29(1)
L(20)	100/1(2) 1150c(2)	5013(1)	0000(1) 9025(1)	$2\delta(1)$
(21)	11500(2)	54/4(2)	8233(1)	31(1)
$\mathcal{L}(22)$	11857(2)	0294(2)	$\delta/U\delta(1)$	30(1)
.(23)	107/6(2)	7238(2)	8981(1)	$\frac{5}{(1)}$
.(24)	9353(2)	/3/9(2)	8/54(1)	39(1)
_(23)	8992(2)	6580(2)	8262(1)	34(1)

Table 8. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) For **11** U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(1)	1.4243(15)	C(9)-H(9A)	0.9900
O(1)-H(1O)	0.840(9)	C(9)-H(9B)	0.9900
O(4)-N(1)	1.2279(16)	C(10)-H(10A)	0.9800
O(5)-N(1)	1.2271(16)	C(10)-H(10B)	0.9800
N(1)-C(14)	1.4698(16)	C(10)-H(10C)	0.9800
N(2)-C(5)	1.3606(16)	C(8A)-O(3A)	1.199(13)
N(2)-C(20)	1.4168(17)	C(8A)-O(2A)	1.354(12)
N(2)-H(2N)	0.856(9)	O(2A)-C(9A)	1.464(10)
C(1)-C(6)	1.5211(16)	C(9A)-C(10A)	1.458(11)
C(1)-C(7)	1.5272(18)	C(9A)-H(9AA)	0.9900
C(1)-C(2)	1.5484(16)	C(9A)-H(9AB)	0.9900
C(2)-C(8)	1.512(2)	C(10A)-H(10D)	0.9800
C(2)-C(8A)	1.531(8)	C(10A)-H(10E)	0.9800
C(2)-C(3)	1.5425(17)	C(10A)-H(10F)	0.9800
C(2)-H(2)	1.0000	C(11)-C(12)	1.3924(17)
C(2)-H(2A)	1.0000	C(11)-C(16)	1.3939(17)
C(3)-C(4)	1.5175(16)	C(12)-C(13)	1.3900(19)
C(3)-C(11)	1.5255(16)	C(12)-H(12)	0.9500
C(3)-H(3)	1.0000	C(13)-C(14)	1.3823(19)
C(4)-C(5)	1.3731(17)	C(13)-H(13)	0.9500
C(4)-C(17)	1.452(5)	C(14)-C(15)	1.3823(18)
C(4)-C(17A)	1.470(5)	C(15)-C(16)	1.3876(18)
C(5)-C(6)	1.5057(16)	C(15)-H(15)	0.9500
C(6)-H(6A)	0.9900	C(16)-H(16)	0.9500
C(6)-H(6B)	0.9900	C(17)-O(7)	1.222(8)
C(7)-H(7A)	0.9800	C(17)-O(6)	1.342(7)
C(7)-H(7B)	0.9800	O(6)-C(18)	1.450(4)
C(7)-H(7C)	0.9800	C(18)-C(19)	1.500(5)
C(8)-O(3)	1.210(3)	C(18)-H(18A)	0.9900
C(8)-O(2)	1.335(2)	C(18)-H(18B)	0.9900
O(2)-C(9)	1.4640(19)	C(19)-H(19A)	0.9800
C(9)-C(10)	1.503(3)	C(19)-H(19B)	0.9800

Table 9.Bond lengths [Å] and angles [°] for 11.

C(19)-H(19C)	0.9800	C(6)-C(1)-C(2)	106.34(9)
C(17A)-O(7A)	1.237(8)	C(7)-C(1)-C(2)	111.66(10)
C(17A)-O(6A)	1.354(7)	C(8)-C(2)-C(3)	111.90(12)
O(6A)-C(18A)	1.451(4)	C(8A)-C(2)-C(3)	100.4(6)
C(18A)-C(19A)	1.496(4)	C(8)-C(2)-C(1)	110.91(13)
C(18A)-H(18C)	0.9900	C(8A)-C(2)-C(1)	115.5(6)
C(18A)-H(18D)	0.9900	C(3)-C(2)-C(1)	110.41(9)
C(19A)-H(19D)	0.9800	C(8)-C(2)-H(2)	107.8
C(19A)-H(19E)	0.9800	C(3)-C(2)-H(2)	107.8
C(19A)-H(19F)	0.9800	C(1)-C(2)-H(2)	107.8
C(20)-C(25)	1.389(2)	C(8A)-C(2)-H(2A)	110.0
C(20)-C(21)	1.392(2)	C(3)-C(2)-H(2A)	110.0
C(21)-C(22)	1.389(2)	C(1)-C(2)-H(2A)	110.0
C(21)-H(21)	0.9500	C(4)-C(3)-C(11)	113.42(10)
C(22)-C(23)	1.381(2)	C(4)-C(3)-C(2)	111.35(10)
C(22)-H(22)	0.9500	C(11)-C(3)-C(2)	107.32(9)
C(23)-C(24)	1.380(3)	C(4)-C(3)-H(3)	108.2
C(23)-H(23)	0.9500	C(11)-C(3)-H(3)	108.2
C(24)-C(25)	1.395(2)	C(2)-C(3)-H(3)	108.2
C(24)-H(24)	0.9500	C(5)-C(4)-C(17)	120.9(3)
C(25)-H(25)	0.9500	C(5)-C(4)-C(17A)	118.2(3)
C(1)-O(1)-H(1O)	110.7(14)	C(5)-C(4)-C(3)	122.54(11)
O(5)-N(1)-O(4)	123.42(11)	C(17)-C(4)-C(3)	115.1(3)
O(5)-N(1)-C(14)	118.05(11)	C(17A)-C(4)-C(3)	119.3(3)
O(4)-N(1)-C(14)	118.52(11)	N(2)-C(5)-C(4)	121.53(11)
C(5)-N(2)-C(20)	129.44(11)	N(2)-C(5)-C(6)	116.67(11)
C(5)-N(2)-H(2N)	112.2(13)	C(4)-C(5)-C(6)	121.74(11)
C(20)-N(2)-H(2N)	117.6(13)	C(5)-C(6)-C(1)	113.25(10)
O(1)-C(1)-C(6)	106.87(10)	C(5)-C(6)-H(6A)	108.9
O(1)-C(1)-C(7)	110.40(10)	C(1)-C(6)-H(6A)	108.9
C(6)-C(1)-C(7)	109.90(11)	C(5)-C(6)-H(6B)	108.9
O(1)-C(1)-C(2)	111.47(10)	C(1)-C(6)-H(6B)	108.9

$H(6A)_{-}C(6)_{-}H(6B)$	107.7	C(9A)- $C(10A)$ - $H(10E)$	109 5
$\Gamma(0A) - C(0) - \Pi(0B)$	107.7	H(10D) C(10A) H(10E)	109.5
$C(1) - C(7) - \Pi(7A)$	109.5	H(10D)-C(10A)-H(10E)	109.5
C(1)-C(7)-H(7B)	109.5	C(9A)-C(10A)-H(10F)	109.5
H(/A)-C(/)-H(/B)	109.5	H(10D)-C(10A)-H(10F)	109.5
C(1)-C(7)-H(7C)	109.5	H(10E)-C(10A)-H(10F)	109.5
H(7A)-C(7)-H(7C)	109.5	C(12)-C(11)-C(16)	118.87(11)
H(7B)-C(7)-H(7C)	109.5	C(12)-C(11)-C(3)	120.14(11)
O(3)-C(8)-O(2)	124.06(18)	C(16)-C(11)-C(3)	120.91(11)
O(3)-C(8)-C(2)	123.88(19)	C(13)-C(12)-C(11)	120.92(12)
O(2)-C(8)-C(2)	112.03(15)	C(13)-C(12)-H(12)	119.5
C(8)-O(2)-C(9)	117.21(14)	C(11)-C(12)-H(12)	119.5
O(2)-C(9)-C(10)	111.57(17)	C(14)-C(13)-C(12)	118.56(12)
O(2)-C(9)-H(9A)	109.3	C(14)-C(13)-H(13)	120.7
C(10)-C(9)-H(9A)	109.3	C(12)-C(13)-H(13)	120.7
O(2)-C(9)-H(9B)	109.3	C(13)-C(14)-C(15)	122.09(12)
C(10)-C(9)-H(9B)	109.3	C(13)-C(14)-N(1)	118.68(12)
H(9A)-C(9)-H(9B)	108.0	C(15)-C(14)-N(1)	119.21(11)
C(9)-C(10)-H(10A)	109.5	C(14)-C(15)-C(16)	118.52(11)
C(9)-C(10)-H(10B)	109.5	C(14)-C(15)-H(15)	120.7
H(10A)-C(10)-H(10B)	109.5	C(16)-C(15)-H(15)	120.7
C(9)-C(10)-H(10C)	109.5	C(15)-C(16)-C(11)	121.03(11)
H(10A)-C(10)-H(10C)	109.5	C(15)-C(16)-H(16)	119.5
H(10B)-C(10)-H(10C)	109.5	С(11)-С(16)-Н(16)	119.5
O(3A)-C(8A)-O(2A)	125.4(11)	O(7)-C(17)-O(6)	124.1(6)
O(3A)-C(8A)-C(2)	126.3(12)	O(7)-C(17)-C(4)	124.3(7)
O(2A)-C(8A)-C(2)	108.1(7)	O(6)-C(17)-C(4)	111.6(5)
C(8A)-O(2A)-C(9A)	117.0(7)	C(17)-O(6)-C(18)	115.4(3)
C(10A)-C(9A)-O(2A)	110.5(9)	O(6)-C(18)-C(19)	110.5(3)
C(10A)-C(9A)-H(9AA)	109.6	O(6)-C(18)-H(18A)	109.5
O(2A)-C(9A)-H(9AA)	109.6	C(19)-C(18)-H(18A)	109.5
C(10A)-C(9A)-H(9AB)	109.6	O(6)-C(18)-H(18B)	109.5
O(2A)-C(9A)-H(9AB)	109.6	C(19)-C(18)-H(18B)	109.5
H(9AA)-C(9A)-H(9AB)	108.1	H(18A)-C(18)-H(18B)	108.1
C(9A)-C(10A)-H(10D)	109.5	C(18)-C(19)-H(19A)	109.5

C(18)-C(19)-H(19B)	109.5	C(23)
H(19A)-C(19)-H(19B)	109.5	C(23)
C(18)-C(19)-H(19C)	109.5	C(25)
H(19A)-C(19)-H(19C)	109.5	C(20)
H(19B)-C(19)-H(19C)	109.5	C(20)
O(7A)-C(17A)-O(6A)	118.9(6)	C(24)
O(7A)-C(17A)-C(4)	127.6(7)	
O(6A)-C(17A)-C(4)	113.4(5)	
C(17A)-O(6A)-C(18A)	118.3(3)	
O(6A)-C(18A)-C(19A)	106.5(2)	
O(6A)-C(18A)-H(18C)	110.4	
C(19A)-C(18A)-H(18C)	110.4	
O(6A)-C(18A)-H(18D)	110.4	
C(19A)-C(18A)-H(18D)	110.4	
H(18C)-C(18A)-H(18D)	108.6	
C(18A)-C(19A)-H(19D)	109.5	
C(18A)-C(19A)-H(19E)	109.5	
H(19D)-C(19A)-H(19E)	109.5	
C(18A)-C(19A)-H(19F)	109.5	
H(19D)-C(19A)-H(19F)	109.5	
H(19E)-C(19A)-H(19F)	109.5	
C(25)-C(20)-C(21)	119.17(13)	
C(25)-C(20)-N(2)	123.63(13)	
C(21)-C(20)-N(2)	117.08(13)	
C(22)-C(21)-C(20)	120.35(14)	
C(22)-C(21)-H(21)	119.8	
C(20)-C(21)-H(21)	119.8	
C(23)-C(22)-C(21)	120.57(15)	
C(23)-C(22)-H(22)	119.7	
C(21)-C(22)-H(22)	119.7	
C(24)-C(23)-C(22)	119.13(14)	
C(24)-C(23)-H(23)	120.4	
C(22)-C(23)-H(23)	120.4	

C(23)-C(24)-C(25)	121.03(15)
C(23)-C(24)-H(24)	119.5
C(25)-C(24)-H(24)	119.5
C(20)-C(25)-C(24)	119.74(15)
C(20)-C(25)-H(25)	120.1
C(24)-C(25)-H(25)	120.1

Symmetry transformations used to generate equivalent atoms:

	T 111	T 122	I 133	I 123	T 113	T 112
	0	U	0	0	0	U
O(1)	28(1)	23(1)	29(1)	2(1)	-16(1)	-9(1)
O(4)	52(1)	36(1)	34(1)	-8(1)	-21(1)	-13(1)
O(5)	30(1)	36(1)	29(1)	-2(1)	-15(1)	-1(1)
N(1)	21(1)	32(1)	25(1)	-5(1)	-8(1)	-6(1)
N(2)	18(1)	38(1)	39(1)	-24(1)	6(1)	-13(1)
C(1)	18(1)	24(1)	22(1)	-3(1)	-7(1)	-8(1)
C(2)	17(1)	20(1)	22(1)	-2(1)	-8(1)	-7(1)
C(3)	19(1)	17(1)	26(1)	-5(1)	-11(1)	-2(1)
C(4)	16(1)	23(1)	29(1)	-10(1)	-6(1)	-2(1)
C(5)	14(1)	21(1)	26(1)	-7(1)	-5(1)	-4(1)
C(6)	16(1)	21(1)	22(1)	-6(1)	-5(1)	-5(1)
C(7)	22(1)	43(1)	24(1)	-9(1)	-3(1)	-14(1)
C(8)	19(1)	27(1)	23(1)	-5(1)	-8(1)	-9(1)
O(2)	17(1)	30(1)	35(1)	-10(1)	-8(1)	-8(1)
O(3)	28(1)	25(1)	25(1)	2(1)	-12(1)	-12(1)
C(9)	21(1)	37(1)	42(1)	-8(1)	-8(1)	-14(1)
C(10)	42(1)	44(1)	50(1)	-9(1)	-21(1)	-21(1)
C(8A)	18(1)	30(1)	29(1)	-4(1)	-10(1)	-9(1)
O(2A)	19(1)	32(1)	33(1)	-7(1)	-10(1)	-10(1)
O(3A)	19(2)	26(2)	25(2)	-2(2)	-7(2)	-8(2)
C(9A)	21(1)	34(1)	38(1)	-9(1)	-12(1)	-13(1)
C(10A)	28(2)	40(2)	45(2)	-6(2)	-8(2)	-11(2)
C(11)	15(1)	22(1)	24(1)	-7(1)	-7(1)	-2(1)
C(12)	39(1)	19(1)	32(1)	-2(1)	-20(1)	-6(1)
C(13)	39(1)	24(1)	35(1)	-6(1)	-19(1)	-9(1)
C(14)	18(1)	28(1)	23(1)	-7(1)	-8(1)	-2(1)
C(15)	22(1)	21(1)	22(1)	-4(1)	-4(1)	1(1)
C(16)	22(1)	20(1)	24(1)	-8(1)	-4(1)	-2(1)
C(17)	14(1)	25(2)	32(2)	-12(2)	-8(1)	1(1)
O(6)	15(1)	26(1)	30(1)	-15(1)	-5(1)	-1(1)
O(7)	18(1)	29(3)	34(3)	-16(2)	-2(2)	-2(2)
C(18)	19(1)	31(1)	30(1)	-16(1)	-5(1)	2(1)
C(19)	31(2)	46(2)	29(2)	-16(1)	-6(1)	-2(1)
C(17A)	17(1)	27(2)	33(2)	-16(2)	-9(1)	2(1)
O(6A)	16(1)	30(1)	30(1)	-14(1)	-4(1)	-2(1)
O(7A)	18(2)	37(3)	37(3)	-16(2)	1(2)	-9(2)
C(18A)	19(1)	36(2)	28(2)	-14(1)	-3(1)	1(1)
C(19A)	44(2)	39(2)	43(2)	-24(1)	-3(1)	-3(1)
C(20)	23(1)	31(1)	30(1)	-14(1)	4(1)	-14(1)
C(21)	26(1)	38(1)	30(1)	-15(1)	-1(1)	-11(1)
C(22)	32(1)	47(1)	31(1)	-17(1)	-4(1)	-15(1)
C(23)	41(1)	41(1)	32(1)	-19(1)	1(1)	-20(1)
C(24)	35(1)	36(1)	46(1)	-23(1)	4(1)	-13(1)
C(25)	25(1)	33(1)	46(1)	-20(1)	1(1)	-12(1)
		× /		× /		. /

Table 10. Anisotropic displacement parameters (Å²x 10³) for **11**. The anisotropic displacement factorexponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	X	у	Z	U(eq)
H(10)	6590(20)	1056(14)	9965(14)	41
H(2N)	10619(17)	4664(19)	6970(12)	36
H(2)	5404	3626	7712	24
H(2A)	5327	3591	7723	24
H(3)	7594	1401	7708	24
H(6A)	6602	4902	8381	24
H(6B)	7653	4134	9199	24
H(7A)	4127	3787	9589	46
H(7B)	5095	3274	10481	46
H(7C)	4202	2219	10303	46
H(9A)	886	2007	8750	41
H(9B)	1811	783	9452	41
H(10A)	2296	1377	7195	65
H(10B)	1021	335	8086	65
H(10C)	2828	22	8042	65
H(9AA)	2062	1307	7499	36
H(9AB)	2915	156	8311	36
H(10D)	731	1991	9007	48
H(10E)	1378	610	9755	48
H(10F)	231	580	9071	48
H(12)	6445	469	6801	35
H(13)	5631	625	5293	37
H(15)	6209	4665	4068	27
H(16)	7059	4492	5565	27
H(18A)	11386	538	5562	31
H(18B)	12280	1767	5507	31
H(19A)	12068	1969	3773	53
H(19B)	11287	3239	4101	53
H(19C)	10215	2096	4206	53
H(18C)	12279	1853	5182	33
H(18D)	11539	3056	4322	33
H(19D)	9970	1494	4276	62
H(19E)	10738	301	5114	62
H(19F)	11774	1082	3917	62
H(21)	12249	4813	8067	37
H(22)	12849	6205	8846	43
H(23)	11009	7784	9320	44
H(24)	8607	8031	8936	46
H(25)	8013	6696	8102	41

Table 11. Hydrogen coordinates ($x\;10^4)$ and isotropic displacement parameters (Å $^2x\;10\;^3)$ for **11**

 Table 12.
 Torsion angles [°] for 11.

O(1)-C(1)-C(2)-C(8)	75.45(14)	C(7)-C(1)-C(6)-C(5)	-172.85(10)
C(6)-C(1)-C(2)-C(8)	-168.42(12)	C(2)-C(1)-C(6)-C(5)	-51.85(13)
C(7)-C(1)-C(2)-C(8)	-48.55(15)	C(3)-C(2)-C(8)-O(3)	52.8(3)
O(1)-C(1)-C(2)-C(8A)	63.8(6)	C(1)-C(2)-C(8)-O(3)	-71.0(3)
C(6)-C(1)-C(2)-C(8A)	179.9(5)	C(3)-C(2)-C(8)-O(2)	-129.11(15)
C(7)-C(1)-C(2)-C(8A)	-60.2(6)	C(1)-C(2)-C(8)-O(2)	107.10(18)
O(1)-C(1)-C(2)-C(3)	-49.18(13)	O(3)-C(8)-O(2)-C(9)	-2.9(3)
C(6)-C(1)-C(2)-C(3)	66.95(12)	C(2)-C(8)-O(2)-C(9)	179.03(16)
C(7)-C(1)-C(2)-C(3)	-173.18(10)	C(8)-O(2)-C(9)-C(10)	-73.0(2)
C(8)-C(2)-C(3)-C(4)	-170.79(13)	C(3)-C(2)-C(8A)-O(3A)	60.2(17)
C(8A)-C(2)-C(3)-C(4)	-169.1(6)	C(1)-C(2)-C(8A)-O(3A)	-58.5(18)
C(1)-C(2)-C(3)-C(4)	-46.73(13)	C(3)-C(2)-C(8A)-O(2A)	-113.9(10)
C(8)-C(2)-C(3)-C(11)	64.53(15)	C(1)-C(2)-C(8A)-O(2A)	127.4(9)
C(8A)-C(2)-C(3)-C(11)	66.2(6)	O(3A)-C(8A)-O(2A)-C(9A)	5(2)
C(1)-C(2)-C(3)-C(11)	-171.41(9)	C(2)-C(8A)-O(2A)-C(9A)	179.4(8)
C(11)-C(3)-C(4)-C(5)	133.30(12)	C(8A)-O(2A)-C(9A)-C(10A)	99.0(12)
C(2)-C(3)-C(4)-C(5)	12.12(16)	C(4)-C(3)-C(11)-C(12)	141.15(12)
C(11)-C(3)-C(4)-C(17)	-60.3(3)	C(2)-C(3)-C(11)-C(12)	-95.44(13)
C(2)-C(3)-C(4)-C(17)	178.5(3)	C(4)-C(3)-C(11)-C(16)	-42.09(15)
C(11)-C(3)-C(4)-C(17A)	-47.4(4)	C(2)-C(3)-C(11)-C(16)	81.33(13)
C(2)-C(3)-C(4)-C(17A)	-168.6(3)	C(16)-C(11)-C(12)-C(13)	0.0(2)
C(20)-N(2)-C(5)-C(4)	-174.81(14)	C(3)-C(11)-C(12)-C(13)	176.82(13)
C(20)-N(2)-C(5)-C(6)	2.3(2)	C(11)-C(12)-C(13)-C(14)	-0.7(2)
C(17)-C(4)-C(5)-N(2)	13.4(4)	C(12)-C(13)-C(14)-C(15)	1.0(2)
C(17A)-C(4)-C(5)-N(2)	-0.3(4)	C(12)-C(13)-C(14)-N(1)	-177.55(13)
C(3)-C(4)-C(5)-N(2)	179.06(12)	O(5)-N(1)-C(14)-C(13)	164.92(13)
C(17)-C(4)-C(5)-C(6)	-163.6(3)	O(4)-N(1)-C(14)-C(13)	-14.71(19)
C(17A)-C(4)-C(5)-C(6)	-177.2(3)	O(5)-N(1)-C(14)-C(15)	-13.65(18)
C(3)-C(4)-C(5)-C(6)	2.08(18)	O(4)-N(1)-C(14)-C(15)	166.72(12)
N(2)-C(5)-C(6)-C(1)	-157.91(11)	C(13)-C(14)-C(15)-C(16)	-0.4(2)
C(4)-C(5)-C(6)-C(1)	19.21(16)	N(1)-C(14)-C(15)-C(16)	178.09(11)
O(1)-C(1)-C(6)-C(5)	67.33(12)	C(14)-C(15)-C(16)-C(11)	-0.37(19)

C(12)-C(11)-C(16)-C(15)	-0.58(19)	C(4)-C(17A)-O(6A)-C(18A)	179.9(4)
C(3)-C(11)-C(16)-C(15)	-176.23(11)	C(17A)-O(6A)-C(18A)-C(19A)	-173.8(4)
C(5)-C(4)-C(17)-O(7)	-18.6(8)	C(5)-N(2)-C(20)-C(25)	-51.3(2)
C(3)-C(4)-C(17)-O(7)	174.7(6)	C(5)-N(2)-C(20)-C(21)	132.73(15)
C(5)-C(4)-C(17)-O(6)	160.3(4)	C(25)-C(20)-C(21)-C(22)	-0.4(2)
C(3)-C(4)-C(17)-O(6)	-6.4(6)	N(2)-C(20)-C(21)-C(22)	175.72(13)
O(7)-C(17)-O(6)-C(18)	-5.8(9)	C(20)-C(21)-C(22)-C(23)	1.5(2)
C(4)-C(17)-O(6)-C(18)	175.3(4)	C(21)-C(22)-C(23)-C(24)	-1.5(2)
C(17)-O(6)-C(18)-C(19)	-86.1(4)	C(22)-C(23)-C(24)-C(25)	0.4(2)
C(5)-C(4)-C(17A)-O(7A)	-4.0(8)	C(21)-C(20)-C(25)-C(24)	-0.7(2)
C(3)-C(4)-C(17A)-O(7A)	176.6(6)	N(2)-C(20)-C(25)-C(24)	-176.59(14)
C(5)-C(4)-C(17A)-O(6A)	172.8(3)	C(23)-C(24)-C(25)-C(20)	0.8(2)
C(3)-C(4)-C(17A)-O(6A)	-6.5(6)		
O(7A)-C(17A)-O(6A)-C(18A)	-3.0(8)		

Symmetry transformations used to generate equivalent atoms:

Data of CCDC 2385272 contains the X-ray data in CIF format for this manuscript. These data can be obtained, free of charge, via <u>http://www.ccdc.cam.ac.uk/cgi-bin/catreq</u>. cgi (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1Ez, UK; fax +44 1223 336033; or e-mail: deposit@ccdc.cam.ac.uk)

Figure **S53**. (CDCl₃, 300 MHz) ¹H NMR spectra for the compound **12**

<u>15</u>5

Figure **S55**. (CDCl₃, 300 MHz) ¹H NMR spectra for the compound **13**

Figure **S57**. (CDCl₃, 300 MHz) ¹H NMR spectra for the compound **14**

Figure **S58**. (CDCl₃, 75 MHz) 13 C NMR spectra for the compound **14**

Figure **S59**. (CDCl₃, 300 MHz) NMR COSY spectra for the compound $\mathbf{14}$

Figure **S62**. (CDCl₃, 300 MHz) NMR HSQC spectra for the compound **14**

Anexos

Figure S63. (CDCl₃, 300 MHz) NMR HMBC spectra for the compound 14

Figure **S66**. (CDCl₃, 300 MHz) ¹H NMR spectra for the compound **16**

Figure **S67**. (CDCl₃, 75 MHz) 13 C NMR spectra for the compound **1**

169